Suppr超能文献

通过堆叠式和双向长短期记忆网络技术进行短期风电功率预测。

Short-term wind power forecasting through stacked and bi directional LSTM techniques.

作者信息

Ali Khan Mehmood, Khan Iftikhar Ahmed, Shah Sajid, El-Affendi Mohammed, Jadoon Waqas

机构信息

Computer Science, Virtual University, Islamabad, Federal, Pakistan.

Computer Science, COMSATS University Islamabad, Abbottabad, KpK, Pakistan.

出版信息

PeerJ Comput Sci. 2024 Mar 29;10:e1949. doi: 10.7717/peerj-cs.1949. eCollection 2024.

Abstract

BACKGROUND

Computational intelligence (CI) based prediction models increase the efficient and effective utilization of resources for wind prediction. However, the traditional recurrent neural networks (RNN) are difficult to train on data having long-term temporal dependencies, thus susceptible to an inherent problem of vanishing gradient. This work proposed a method based on an advanced version of RNN known as long short-term memory (LSTM) architecture, which updates recurrent weights to overcome the vanishing gradient problem. This, in turn, improves training performance.

METHODS

The RNN model is developed based on stack LSTM and bidirectional LSTM. The parameters like mean absolute error (MAE), standard deviation error (SDE), and root mean squared error (RMSE) are utilized as performance measures for comparison with recent state-of-the-art techniques.

RESULTS

Results showed that the proposed technique outperformed the existing techniques in terms of RMSE and MAE against all the used wind farm datasets. Whereas, a reduction in SDE is observed for larger wind farm datasets. The proposed RNN approach performed better than the existing models despite fewer parameters. In addition, the approach requires minimum processing power to achieve compatible results.

摘要

背景

基于计算智能(CI)的预测模型提高了风能预测资源的有效利用。然而,传统的递归神经网络(RNN)在处理具有长期时间依赖性的数据时难以训练,因此容易受到梯度消失这一固有问题的影响。这项工作提出了一种基于RNN的高级版本(称为长短期记忆(LSTM)架构)的方法,该方法更新递归权重以克服梯度消失问题。这反过来又提高了训练性能。

方法

基于堆叠LSTM和双向LSTM开发RNN模型。使用平均绝对误差(MAE)、标准差误差(SDE)和均方根误差(RMSE)等参数作为性能指标,与最新的先进技术进行比较。

结果

结果表明,在所使用的所有风电场数据集方面,所提出的技术在RMSE和MAE方面优于现有技术。而对于较大的风电场数据集,SDE有所降低。尽管参数较少,但所提出的RNN方法比现有模型表现更好。此外,该方法需要最小的处理能力来获得兼容的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33ae/11042035/dda032a2571f/peerj-cs-10-1949-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验