Zucatelli P J, Nascimento E G S, Aylas G Y R, Souza N B P, Kitagawa Y K L, Santos A A B, Arce A M G, Moreira D M
Federal University of Espírito Santo-UFES, ES, Brazil.
Manufacturing and Technology Integrated Campus - SENAI CIMATEC, BA, Brazil.
Heliyon. 2019 May 11;5(5):e01664. doi: 10.1016/j.heliyon.2019.e01664. eCollection 2019 May.
Short-term wind speed forecasting for Colonia Eulacio, Soriano Department, Uruguay, is performed by applying an artificial neural network (ANN) technique to the hourly time series representative of the site. To train the ANN and validate the technique, data for one year are collected by one tower, with anemometers installed at heights of 101.8, 81.8, 25.7, and 10.0 m. Different ANN configurations are applied for each site and height; then, a quantitative analysis is conducted, and the statistical results are evaluated to select the configuration that best predicts the real data. This method has lower computational costs than other techniques, such as numerical modelling. For integrating wind power into existing grid systems, accurate short-term wind speed forecasting is fundamental. Therefore, the proposed short-term wind speed forecasting method is an important scientific contribution for reliable large-scale wind power forecasting and integration in Uruguay. The results of the short-term wind speed forecasting showed good accuracy at all the anemometer heights tested, suggesting that the method is a powerful tool that can help the Administración Nacional de Usinas y Transmissiones Eléctricas manage the national energy supply.
通过将人工神经网络(ANN)技术应用于代表乌拉圭索里亚诺省埃拉西奥殖民地的每小时时间序列,来进行短期风速预测。为了训练人工神经网络并验证该技术,一座塔收集了一年的数据,风速仪安装在101.8米、81.8米、25.7米和10.0米的高度。针对每个地点和高度应用不同的人工神经网络配置;然后,进行定量分析,并评估统计结果以选择最能预测实际数据的配置。该方法的计算成本低于其他技术,如数值建模。为了将风能整合到现有的电网系统中,准确的短期风速预测至关重要。因此,所提出的短期风速预测方法是乌拉圭可靠的大规模风能预测和整合的一项重要科学贡献。短期风速预测结果在所有测试的风速仪高度上都显示出良好的准确性,这表明该方法是一个强大的工具,可以帮助国家电力工厂和输电管理局管理国家能源供应。