Gao Yuxin, Ou Leyan, Liu Kunfeng, Guo Yuan, Li Wanyuan, Xiong Ze, Wu Changjin, Wang Jizhuang, Tang Jinyao, Li Dan
College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.
The Third People's Hospital of Ganzhou, Ganzhou City, Jiangxi Province, 341000, P. R. China.
Angew Chem Int Ed Engl. 2024 Jul 8;63(28):e202405895. doi: 10.1002/anie.202405895. Epub 2024 Jun 3.
Light-driven micro/nanorobots (LMNRs) are tiny, untethered machines with great potential in fields like precision medicine, nano manufacturing, and various other domains. However, their practicality hinges on developing light-manipulation strategies that combine versatile functionalities, flexible design options, and precise controllability. Our study introduces an innovative approach to construct micro/nanorobots (MNRs) by utilizing micro/nanomotors as fundamental building blocks. Inspired by silicon Metal-Insulator-Semiconductor (MIS) solar cell principles, we design a new type of optomagnetic hybrid micromotors (OHMs). These OHMs have been skillfully optimized with integrated magnetic constituent, resulting in efficient light propulsion, precise magnetic navigation, and the potential for controlled assembly. One of the key features of the OHMs is their ability to exhibit diverse motion modes influenced by fracture surfaces and interactions with the environment, streamlining cargo conveyance along "micro expressway"-the predesigned microchannels. Further enhancing their versatility, a template-guided assembly strategy facilitates the assembly of these micromotors into functional microrobots, encompassing various configurations such as "V-shaped", "N-shaped", and 3D structured microrobots. The heightened capabilities of these microrobots, underscore the innovative potential inherent in hybrid micromotor design and assembly, which provides a foundational platform for the realization of multi-component microrobots. Our work moves a step toward forthcoming microrobotic entities boasting advanced functionalities.
光驱动微纳机器人(LMNRs)是微小的、无需线缆连接的机器,在精准医疗、纳米制造和其他各个领域具有巨大潜力。然而,它们的实用性取决于开发结合多种功能、灵活设计选项和精确可控性的光操纵策略。我们的研究引入了一种创新方法,通过将微纳马达作为基本构建单元来构建微纳机器人(MNRs)。受硅金属 - 绝缘体 - 半导体(MIS)太阳能电池原理的启发,我们设计了一种新型的光磁混合微马达(OHMs)。这些OHMs通过集成磁性成分进行了巧妙优化,实现了高效的光驱动推进、精确的磁导航以及可控组装的潜力。OHMs的一个关键特性是它们能够展现出受断裂表面和与环境相互作用影响的多种运动模式,从而沿着“微高速公路”——预先设计的微通道简化货物运输。为进一步增强其多功能性,一种模板引导组装策略有助于将这些微马达组装成功能化的微机器人,包括各种配置,如“V形”、“N形”和三维结构的微机器人。这些微机器人增强的能力突出了混合微马达设计和组装中固有的创新潜力,为实现多组件微机器人提供了一个基础平台。我们的工作朝着拥有先进功能的未来微机器人实体迈进了一步。