Suppr超能文献

金属有机框架涂层提高了微马达的离子耐受性。

MOF Coating Enhances the Ion Tolerance of Micromotors.

作者信息

Ou Leyan, Liu Kunfeng, Zhang Yifan, Li Wanyuan, Liang Zixian, Lei Dapeng, Sun Hao, Chen Mojun, Wang Jizhuang, Tang Jinyao, Li Dan

机构信息

College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, Guangdong, 510632, P.R. China.

Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, P.R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Jul 28;64(31):e202508001. doi: 10.1002/anie.202508001. Epub 2025 Jun 3.

Abstract

Electrophoretic-driven micro/nanomotors (EMNMs) offer great potential for biomedical applications due to their design flexibility. However, they face challenges in high-salt environments, where ionic quenching disrupts propulsion by collapsing the electrical double layer. This study introduces a versatile strategy by coating EMNMs with a MOF porous scaffold (ZIF-8), which acts as ion-conductive channels that replace the electrical Debye layers and support propulsion in high-salt solutions. Through a heteroepitaxial growth process, ZIF-8 was precisely coated on silicon micromotors, a typical model for EMNMs, significantly enhancing their ion tolerance. By optimizing both the MOF layer and the geometry factor, the micromotors achieved effective motion in PBS solution, comparable to blood salt levels, with their ion tolerance (EI) improving by up to 266 times compared to uncoated micromotors. Additionally, the micromotors maintained stable, controllable motion under 980 nm NIR light, even when passing through an artificial blood vessel covered with biological tissues. In addition, the ZIF-8 coating offers drug-loading capabilities and pH-responsive release, along with biocompatibility, making these micromotors suitable for targeted drug delivery. This MOF coating strategy is versatile and scalable, and can be extended to other types of EMNMs, significantly enhancing their ion tolerance and unlocking new possibilities for biomedical applications.

摘要

电泳驱动的微纳马达(EMNMs)因其设计灵活性在生物医学应用方面具有巨大潜力。然而,它们在高盐环境中面临挑战,在这种环境下,离子猝灭会通过破坏双电层来干扰推进。本研究介绍了一种通用策略,即通过用金属有机框架(MOF)多孔支架(ZIF-8)包覆EMNMs,该支架充当离子传导通道,取代电德拜层并支持在高盐溶液中的推进。通过异质外延生长过程,ZIF-8精确包覆在硅微马达(EMNMs的典型模型)上,显著提高了它们的离子耐受性。通过优化MOF层和几何因子,微马达在与血盐水平相当的PBS溶液中实现了有效运动,其离子耐受性(EI)与未包覆的微马达相比提高了多达266倍。此外,即使穿过覆盖有生物组织的人造血管,微马达在980 nm近红外光下仍保持稳定、可控的运动。此外,ZIF-8涂层具有药物负载能力和pH响应释放特性,以及生物相容性,使这些微马达适用于靶向药物递送。这种MOF包覆策略具有通用性和可扩展性,可扩展到其他类型的EMNMs,显著提高它们的离子耐受性,并为生物医学应用开启新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5275/12304825/0d747a6142e9/ANIE-64-e202508001-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验