Huang Zhibin, Mo Sijie, Wu Huaiyu, Kong Yao, Luo Hui, Li Guoqiu, Zheng Jing, Tian Hongtian, Tang Shuzhen, Chen Zhijie, Wang Youping, Xu Jinfeng, Zhou Luyao, Dong Fajin
Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China.
Ultrasound Imaging System Development Department, Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China.
Photoacoustics. 2024 Apr 9;38:100606. doi: 10.1016/j.pacs.2024.100606. eCollection 2024 Aug.
The differentiation between benign and malignant breast tumors extends beyond morphological structures to encompass functional alterations within the nodules. The combination of photoacoustic (PA) imaging and radiomics unveils functional insights and intricate details that are imperceptible to the naked eye.
This study aims to assess the efficacy of PA imaging in breast cancer radiomics, focusing on the impact of peritumoral region size on radiomic model accuracy.
From January 2022 to November 2023, data were collected from 358 patients with breast nodules, diagnosed via PA/US examination and classified as BI-RADS 3-5. The study used the largest lesion dimension in PA images to define the region of interest, expanded by 2 mm, 5 mm, and 8 mm, for extracting radiomic features. Techniques from statistics and machine learning were applied for feature selection, and logistic regression classifiers were used to build radiomic models. These models integrated both intratumoral and peritumoral data, with logistic regressions identifying key predictive features.
The developed nomogram, combining 5 mm peritumoral data with intratumoral and clinical features, showed superior diagnostic performance, achieving an AUC of 0.950 in the training cohort and 0.899 in validation. This model outperformed those based solely on clinical features or other radiomic methods, with the 5 mm peritumoral region proving most effective in identifying malignant nodules.
This research demonstrates the significant potential of PA imaging in breast cancer radiomics, especially the advantage of integrating 5 mm peritumoral with intratumoral features. This approach not only surpasses models based on clinical data but also underscores the importance of comprehensive radiomic analysis in accurately characterizing breast nodules.
乳腺肿瘤良恶性的鉴别不仅局限于形态结构,还包括结节内的功能改变。光声(PA)成像与放射组学相结合,揭示了肉眼难以察觉的功能见解和复杂细节。
本研究旨在评估PA成像在乳腺癌放射组学中的效能,重点关注瘤周区域大小对放射组学模型准确性的影响。
收集2022年1月至2023年11月期间358例经PA/超声检查诊断为BI-RADS 3-5级的乳腺结节患者的数据。该研究使用PA图像中的最大病变尺寸来定义感兴趣区域,并分别向外扩展2毫米、5毫米和8毫米以提取放射组学特征。运用统计学和机器学习技术进行特征选择,并使用逻辑回归分类器构建放射组学模型。这些模型整合了瘤内和瘤周数据,通过逻辑回归确定关键预测特征。
所构建的列线图结合了5毫米瘤周数据与瘤内及临床特征,显示出卓越的诊断性能,在训练队列中的AUC为0.950,在验证队列中的AUC为0.899。该模型优于仅基于临床特征或其他放射组学方法构建的模型,其中5毫米瘤周区域在识别恶性结节方面最为有效。
本研究证明了PA成像在乳腺癌放射组学中具有巨大潜力,尤其是将5毫米瘤周特征与瘤内特征相结合的优势。这种方法不仅超越了基于临床数据的模型,还凸显了全面放射组学分析在准确表征乳腺结节中的重要性。