Suppr超能文献

通过DNA定向固定催化剂实现高效二氧化碳电还原

Highly Efficient Carbon Dioxide Electroreduction via DNA-Directed Catalyst Immobilization.

作者信息

Fan Gang, Corbin Nathan, Chung Minju, Gill Thomas M, Moore Evan B, Karbelkar Amruta A, Furst Ariel L

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

JACS Au. 2024 Mar 25;4(4):1413-1421. doi: 10.1021/jacsau.3c00823. eCollection 2024 Apr 22.

Abstract

Electrochemical reduction of carbon dioxide (CO) is a promising route to up-convert this industrial byproduct. However, to perform this reaction with a small-molecule catalyst, the catalyst must be proximal to an electrode surface. Efforts to immobilize molecular catalysts on electrodes have been stymied by the need to optimize the immobilization chemistries on a case-by-case basis. Taking inspiration from nature, we applied DNA as a molecular-scale "Velcro" to investigate the tethering of three porphyrin-based catalysts to electrodes. This tethering strategy improved both the stability of the catalysts and their Faradaic efficiencies (FEs). DNA-catalyst conjugates were immobilized on screen-printed carbon and carbon paper electrodes via DNA hybridization with nearly 100% efficiency. Following immobilization, a higher catalyst stability at relevant potentials is observed. Additionally, lower overpotentials are required for the generation of carbon monoxide (CO). Finally, high FE for CO generation was observed with the DNA-immobilized catalysts as compared to the unmodified small-molecule systems, as high as 79.1% FE for CO at -0.95 V vs SHE using a DNA-tethered catalyst. This work demonstrates the potential of DNA "Velcro" as a powerful strategy for catalyst immobilization. Here, we demonstrated improved catalytic characteristics of molecular catalysts for CO valorization, but this strategy is anticipated to be generalizable to any reaction that proceeds in aqueous solutions.

摘要

二氧化碳(CO₂)的电化学还原是将这种工业副产品进行升级转化的一条很有前景的途径。然而,要使用小分子催化剂进行此反应,催化剂必须靠近电极表面。将分子催化剂固定在电极上的努力因需要逐案优化固定化学方法而受阻。从自然界获得灵感,我们应用DNA作为分子尺度的“维可牢尼龙搭扣”来研究三种基于卟啉的催化剂与电极的连接。这种连接策略提高了催化剂的稳定性及其法拉第效率(FE)。通过DNA杂交,DNA - 催化剂共轭物以近100%的效率固定在丝网印刷碳电极和碳纸电极上。固定后,在相关电位下观察到更高的催化剂稳定性。此外,生成一氧化碳(CO)所需的过电位更低。最后,与未修饰的小分子体系相比,DNA固定的催化剂在生成CO时观察到高法拉第效率,使用DNA连接的催化剂在相对于标准氢电极(SHE)为 -0.95 V时,CO的法拉第效率高达79.1%。这项工作证明了DNA“维可牢尼龙搭扣”作为催化剂固定的有力策略的潜力。在这里,我们展示了用于CO增值的分子催化剂的改进催化特性,但预计该策略可推广到任何在水溶液中进行的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d842/11040669/8d5f4310cde7/au3c00823_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验