Tulipman Evyatar, Berg Erez
Department of Condensed Matter Physics, Weizmann Institute of Science, 76100 Rehovot, Israel.
NPJ Quantum Mater. 2023;8(1):66. doi: 10.1038/s41535-023-00598-z. Epub 2023 Nov 7.
The Wiedemann-Franz (WF) law, stating that the Lorenz ratio = /() between the thermal and electrical conductivities in a metal approaches a universal constant at low temperatures, is often interpreted as a signature of fermionic Landau quasi-particles. In contrast, we show that various models of weakly disordered non-Fermi liquids also obey the WF law at → 0. Instead, we propose using the leading low-temperature correction to the WF law, () - (proportional to the inelastic scattering rate), to distinguish different types of strange metals. As an example, we demonstrate that in a solvable model of a marginal Fermi-liquid, () - ∝ - . Using the quantum Boltzmann equation (QBE) approach, we find analogous behavior in a class of marginal- and non-Fermi liquids with a weakly momentum-dependent inelastic scattering. In contrast, in a Fermi-liquid, () - is proportional to - . This holds even when the resistivity grows linearly with , due to - linear quasi-elastic scattering (as in the case of electron-phonon scattering at temperatures above the Debye frequency). Finally, by exploiting the QBE approach, we demonstrate that the transverse Lorenz ratio, = /(), exhibits the same behavior.
维德曼 - 夫兰兹(WF)定律指出,金属中热导率与电导率的洛伦兹比 = /() 在低温下趋近于一个普适常数 ,通常被解释为费米子朗道准粒子的一个特征。相比之下,我们表明,各种弱无序非费米液体模型在 → 0 时也遵循 WF 定律。相反,我们建议使用 WF 定律的主导低温修正项 () - (与非弹性散射率成正比)来区分不同类型的奇异金属。例如,我们证明在一个可解的边缘费米液体模型中,() - ∝ - 。使用量子玻尔兹曼方程(QBE)方法,我们在一类具有弱动量依赖非弹性散射的边缘和非费米液体中发现了类似行为。相比之下,在费米液体中,() - 与 - 成正比。即使电阻率随 线性增长,由于 - 线性准弹性散射(如在高于德拜频率的温度下电子 - 声子散射的情况),这一关系仍然成立。最后,通过利用 QBE 方法,我们证明横向洛伦兹比 = /() 表现出相同的行为。