Suppr超能文献

基于深度Q网络的未知环境下Airsim模拟器中无人机路径规划方法

E-DQN-Based Path Planning Method for Drones in Airsim Simulator under Unknown Environment.

作者信息

Chao Yixun, Dillmann Rüdiger, Roennau Arne, Xiong Zhi

机构信息

Navigation Research Center, School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

FZI Research Center for Information Technology, 76131 Karlsruhe, Germany.

出版信息

Biomimetics (Basel). 2024 Apr 16;9(4):238. doi: 10.3390/biomimetics9040238.

Abstract

To improve the rapidity of path planning for drones in unknown environments, a new bio-inspired path planning method using E-DQN (event-based deep -network), referring to introducing event stream to reinforcement learning network, is proposed. Firstly, event data are collected through an airsim simulator for environmental perception, and an auto-encoder is presented to extract data features and generate event weights. Then, event weights are input into DQN (deep -network) to choose the action of the next step. Finally, simulation and verification experiments are conducted in a virtual obstacle environment built with an unreal engine and airsim. The experiment results show that the proposed algorithm is adaptable for drones to find the goal in unknown environments and can improve the rapidity of path planning compared with that of commonly used methods.

摘要

为提高无人机在未知环境中的路径规划速度,提出了一种新的受生物启发的路径规划方法,即使用E-DQN(基于事件的深度网络),该方法是指将事件流引入强化学习网络。首先,通过airsim模拟器收集事件数据用于环境感知,并提出一种自动编码器来提取数据特征并生成事件权重。然后,将事件权重输入到DQN(深度网络)中以选择下一步的动作。最后,在由虚幻引擎和airsim构建的虚拟障碍环境中进行仿真和验证实验。实验结果表明,所提算法适用于无人机在未知环境中找到目标,并且与常用方法相比能够提高路径规划的速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cdb/11048472/fa33c29eaad7/biomimetics-09-00238-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验