Suppr超能文献

基于深度强化学习的交通信号控制:利用高分辨率基于事件的数据

Deep Reinforcement Learning-Based Traffic Signal Control Using High-Resolution Event-Based Data.

作者信息

Wang Song, Xie Xu, Huang Kedi, Zeng Junjie, Cai Zimin

机构信息

College of Systems Engineering, National University of Defense Technology, Changsha 410073, China.

出版信息

Entropy (Basel). 2019 Jul 29;21(8):744. doi: 10.3390/e21080744.

Abstract

Reinforcement learning (RL)-based traffic signal control has been proven to have great potential in alleviating traffic congestion. The state definition, which is a key element in RL-based traffic signal control, plays a vital role. However, the data used for state definition in the literature are either coarse or difficult to measure directly using the prevailing detection systems for signal control. This paper proposes a deep reinforcement learning-based traffic signal control method which uses high-resolution event-based data, aiming to achieve cost-effective and efficient adaptive traffic signal control. High-resolution event-based data, which records the time when each vehicle-detector actuation/de-actuation event occurs, is informative and can be collected directly from vehicle-actuated detectors (e.g., inductive loops) with current technologies. Given the event-based data, deep learning techniques are employed to automatically extract useful features for traffic signal control. The proposed method is benchmarked with two commonly used traffic signal control strategies, i.e., the fixed-time control strategy and the actuated control strategy, and experimental results reveal that the proposed method significantly outperforms the commonly used control strategies.

摘要

基于强化学习(RL)的交通信号控制已被证明在缓解交通拥堵方面具有巨大潜力。状态定义作为基于强化学习的交通信号控制中的关键要素,起着至关重要的作用。然而,文献中用于状态定义的数据要么粗糙,要么难以使用当前用于信号控制的检测系统直接测量。本文提出了一种基于深度强化学习的交通信号控制方法,该方法使用高分辨率的基于事件的数据,旨在实现具有成本效益和高效的自适应交通信号控制。高分辨率的基于事件的数据记录了每个车辆检测器启动/停用事件发生的时间,信息量丰富,并且可以利用当前技术直接从车辆启动检测器(如感应线圈)收集。给定基于事件的数据,采用深度学习技术自动提取用于交通信号控制的有用特征。所提出的方法与两种常用的交通信号控制策略,即定时控制策略和感应控制策略进行了基准测试,实验结果表明所提出的方法明显优于常用的控制策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9783/7515273/cb149d37f940/entropy-21-00744-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验