Hu Ruiyuan, Wang Taomiao, Wang Fei, Li Yongjun, Sun Yonggui, Liang Xiao, Zhou Xianfang, Yang Guo, Li Qiannan, Zhang Fan, Zhu Quanyao, Li Xing'ao, Hu Hanlin
Jiangsu Provincial Engineering Research Center of Low-Dimensional Physics and New Energy & School of Science, Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen 518055, China.
Nanomaterials (Basel). 2024 Apr 9;14(8):653. doi: 10.3390/nano14080653.
Due to current issues of energy-level mismatch and low transport efficiency in commonly used electron transport layers (ETLs), such as TiO and SnO, finding a more effective method to passivate the ETL and perovskite interface has become an urgent matter. In this work, we integrated a new material, the ionic liquid (IL) hexylammonium acetate (HAAc), into the SnO/perovskite interface to improve performance via the improvement of perovskite quality formed by the two-step method. The IL anions fill oxygen vacancy defects in SnO, while the IL cations interact chemically with Pb within the perovskite structure, reducing defects and optimizing the morphology of the perovskite film such that the energy levels of the ETL and perovskite become better matched. Consequently, the decrease in non-radiative recombination promotes enhanced electron transport efficiency. Utilizing HAAc, we successfully regulated the morphology and defect states of the perovskite layer, resulting in devices surpassing 24% efficiency. This research breakthrough not only introduces a novel material but also propels the utilization of ILs in enhancing the performance of perovskite photovoltaic systems using two-step synthesis.
由于常用电子传输层(ETL)(如TiO和SnO)目前存在能级不匹配和传输效率低的问题,寻找一种更有效的方法来钝化ETL与钙钛矿的界面已成为当务之急。在这项工作中,我们将一种新材料——离子液体(IL)乙酸己铵(HAAc),整合到SnO/钙钛矿界面中,通过改进两步法形成的钙钛矿质量来提高性能。IL阴离子填充SnO中的氧空位缺陷,而IL阳离子与钙钛矿结构中的Pb发生化学相互作用,减少缺陷并优化钙钛矿薄膜的形态,使得ETL和钙钛矿的能级更好地匹配。因此,非辐射复合的减少促进了电子传输效率的提高。利用HAAc,我们成功地调控了钙钛矿层的形态和缺陷状态,从而使器件效率超过24%。这一研究突破不仅引入了一种新型材料,还推动了ILs在利用两步合成提高钙钛矿光伏系统性能方面的应用。