Suppr超能文献

动态遗传分化驱动蛇毒蛋白毒素广泛的结构和功能趋同进化。

Dynamic genetic differentiation drives the widespread structural and functional convergent evolution of snake venom proteinaceous toxins.

机构信息

Institute of Biology Leiden, Leiden University, 2333BE, Leiden, The Netherlands.

Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia.

出版信息

BMC Biol. 2022 Jan 7;20(1):4. doi: 10.1186/s12915-021-01208-9.

Abstract

BACKGROUND

The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes.

RESULTS

Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus, Heterodon nasicus, Rhabdophis subminiatus; Homalopsidae - Homalopsis buccata; Lamprophiidae - Malpolon monspessulanus, Psammophis schokari, Psammophis subtaeniatus, Rhamphiophis oxyrhynchus; and Viperidae - Bitis atropos, Pseudocerastes urarachnoides, Tropidolaeumus subannulatus, Vipera transcaucasiana. These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms.

CONCLUSIONS

We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator-prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline.

摘要

背景

高级蛇类(超科 Colubroidea)的辐射爆炸和多样化与毒液系统的各个方面的变化有关。形态变化包括将混合祖先腺分为两个独立的腺,分别用于产生毒液或粘液,以及毒液输送牙齿的位置、大小和结构元素的变化。也存在证据表明,高级蛇类中表达的毒液腺毒素之间具有同源性。然而,尽管蛇毒具有进化新颖性,但深入的毒素分子进化历史重建大多仅限于两种前齿蛇科(Elapidae 和 Viperidae)中存在的那些类型。为了更全面地了解现存蛇类之间共享的毒素,我们首先对 8 种分类学上多样化的后齿蛇类物种和 4 种关键蝰蛇科物种的转录组进行了测序,并分析了高级蛇类中共享的主要毒素类型。

结果

为以下科和物种构建了转录组:Colubridae - Helicops leopardinus、Heterodon nasicus、Rhabdophis subminiatus;Homalopsidae - Homalopsis buccata; Lamprophiidae - Malpolon monspessulanus、Psammophis schokari、Psammophis subtaeniatus、Rhamphiophis oxyrhynchus;和 Viperidae - Bitis atropos、Pseudocerastes urarachnoides、Tropidolaeumus subannulatus、Vipera transcaucasiana。这些序列与其他物种的可用数据库中的序列相结合,以便于对高级蛇类最后共同祖先毒液中存在的关键毒素类别的分子进化历史进行稳健重建,从而展示出所有 Colubroid 蛇毒的多样性。除了蛇类谱系之间毒素类别的不同进化率外,这些分析还揭示了多次以前未知的结构和功能趋同实例。结构趋同包括:形成异源复合物的新半胱氨酸的进化,例如 Kunitz 肽(β-金环蛇毒素特征至少进化了两次)和 SVMP 酶(P-IIId 特征至少进化了三次);以及 C 型利钠肽中 C 端尾部的进化,在两次单独的进化中,形成了与 ANP/BNP 尾部条件的结构和功能类似物。还表明,在利钠肽基因原肽区域内新的翻译后释放毒素家族的从头进化至少发生了 5 次,具有从诱导低血压到突触后神经毒性的新功能。功能趋同包括:SVMP 多次在促凝血毒液中被新功能化为凝血因子凝血酶原和因子 X 的激活剂;在促凝血毒液中,kunitz 肽多次被新功能化为纤溶酶的抑制剂,从而延长由凝血激活酶毒素形成的血栓的半衰期;以及 kunitz 肽多次被新功能化为作用于突触前靶点的神经毒素,包括仅仅在金环蛇毒液中两次。

结论

我们发现了蛇毒结构和功能进化中的新趋同。这些结果为未来的工作提供了详细的路线图,以阐明捕食者-猎物的进化军备竞赛,确定不同的临床病理学,并记录丰富的生物发现资源,用于药物设计和发现管道中的先导化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3364/8742412/fe35f7d1f498/12915_2021_1208_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验