Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
Department of Mathematics, Hamdard University Bangladesh (HUB), Munshiganj, Bangladesh.
PLoS One. 2024 Apr 26;19(4):e0300321. doi: 10.1371/journal.pone.0300321. eCollection 2024.
This work explores diverse novel soliton solutions of two fractional nonlinear models, namely the truncated time M-fractional Chafee-Infante (tM-fCI) and truncated time M-fractional Landau-Ginzburg-Higgs (tM-fLGH) models. The several soliton waves of time M-fractional Chafee-Infante model describe the stability of waves in a dispersive fashion, homogeneous medium and gas diffusion, and the solitary waves of time M-fractional Landau-Ginzburg-Higgs model are used to characterize the drift cyclotron movement for coherent ion-cyclotrons in a geometrically chaotic plasma. A confirmed unified technique exploits soliton solutions of considered fractional models. Under the conditions of the constraint, fruitful solutions are gained and verified with the use of the symbolic software Maple 18. Keeping special values of the constraint, this inquisition achieved kink shape, the collision of kink type and lump wave, the collision of lump and bell type, periodic lump wave, bell shape, some periodic soliton waves for time M-fractional Chafee-Infante and periodic lump, and some diverse periodic and solitary waves for time M-fractional Landau-Ginzburg-Higgs model successfully. The required solutions in this work have many constructive descriptions, and corporal behaviors have been incorporated through some abundant 3D figures with density plots. We compare the m-fractional derivative with the beta fractional derivative and the classical form of these models in two-dimensional plots. Comparisons with others' results are given likewise.
本文研究了两个分数阶非线性模型的多种新型孤波解,即截断时间 M 分数 Chafee-Infante(tM-fCI)和截断时间 M 分数 Landau-Ginzburg-Higgs(tM-fLGH)模型。时间 M 分数 Chafee-Infante 模型的多个孤波描述了色散方式、均匀介质和气体扩散中波的稳定性,时间 M 分数 Landau-Ginzburg-Higgs 模型的孤波用于描述在几何混沌等离子体中相干离子回旋加速器的漂移回旋运动。一种经过验证的统一技术利用了所考虑的分数阶模型的孤波解。在约束条件下,使用符号软件 Maple 18 获得了丰富的解,并进行了验证。在约束的特殊值下,本研究成功地实现了扭型、扭型和类孤子波的碰撞、类孤子和钟型的碰撞、周期类孤子波、钟型、时间 M 分数 Chafee-Infante 的一些周期孤子波和周期类孤子,以及时间 M 分数 Landau-Ginzburg-Higgs 模型的一些不同的周期和孤立波。本文所需的解具有许多建设性的描述,并通过一些丰富的三维密度图纳入了物质行为。我们在二维图中比较了 m-分数导数与 beta 分数导数和这些模型的经典形式。同样给出了与其他人结果的比较。