Suppr超能文献

大豆()病原体抗性的基因组蓝图:揭示可持续农业的关键基因。

Genomic blueprints of soybean () pathogen resistance: revealing the key genes for sustainable agriculture.

机构信息

Ministry of Agriculture (MOA) National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.

Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore, Pakistan.

出版信息

Funct Plant Biol. 2024 Apr;51. doi: 10.1071/FP23295.

Abstract

Soybean (Glycine max ) is an important oilseed, protein and biodiesel crop. It faces significant threats from bacterial, fungal and viral pathogens, which cause economic losses and jeopardises global food security. In this article, we explore the relationship between soybeans and these pathogens, focusing on the molecular responses that are crucial for soybeans defence mechanisms. Molecular responses involve small RNAs and specific genes, including resistance (R) genes that are pivotal in triggering immune responses. Functional genomics, which makes use of cutting-edge technologies, such as CRISPR Cas9 gene editing, allows us to identify genes that provide insights into the defence mechanisms of soybeans with the focus on using genomics to understand the mechanisms involved in host pathogen interactions and ultimately improve the resilience of soybeans. Genes like GmKR3 and GmVQ58 have demonstrated resistance against soybean mosaic virus and common cutworm, respectively. Genetic studies have identified quantitative trait loci (QTLs) including those linked with soybean cyst nematode, root-knot nematode and Phytophthora root and stem rot resistance. Additionally, resistance against Asian soybean rust and soybean cyst nematode involves specific genes and their variations in terms of different copy numbers. To address the challenges posed by evolving pathogens and meet the demands of a growing population, accelerated soybean breeding efforts leveraging functional genomics are imperative. Targeted breeding strategies based on a deeper understanding of soybean gene function and regulation will enhance disease resistance, ensuring sustainable agriculture and global food security. Collaborative research and continued technological advancements are crucial for securing a resilient and productive agricultural future.

摘要

大豆(Glycine max)是一种重要的油料作物、蛋白质和生物柴油作物。它面临着来自细菌、真菌和病毒病原体的重大威胁,这些威胁会导致经济损失,并危及全球粮食安全。在本文中,我们探讨了大豆与这些病原体之间的关系,重点研究了对大豆防御机制至关重要的分子反应。分子反应涉及小 RNA 和特定基因,包括在触发免疫反应中起关键作用的抗性(R)基因。功能基因组学利用 CRISPR Cas9 基因编辑等先进技术,可以识别出提供大豆防御机制见解的基因,重点是利用基因组学来理解宿主-病原体相互作用的机制,并最终提高大豆的抗逆性。GmKR3 和 GmVQ58 等基因分别表现出对大豆花叶病毒和普通菜青虫的抗性。遗传研究已经确定了数量性状位点(QTLs),包括与大豆胞囊线虫、根结线虫和大豆疫霉根腐和茎腐病抗性相关的 QTLs。此外,对亚洲大豆锈病和大豆胞囊线虫的抗性涉及特定基因及其在不同拷贝数上的变异。为了应对不断进化的病原体带来的挑战,满足不断增长的人口需求,利用功能基因组学加速大豆育种工作至关重要。基于对大豆基因功能和调控的更深入理解的靶向育种策略将增强抗病性,确保可持续农业和全球粮食安全。合作研究和持续的技术进步对于确保有弹性和富有成效的农业未来至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验