Suppr超能文献

锌转运蛋白 ZIP7 增强内质网相关蛋白降解,防止果蝇神经退行性变。

The Zn transporter ZIP7 enhances endoplasmic-reticulum-associated protein degradation and prevents neurodegeneration in Drosophila.

机构信息

Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA.

Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.

出版信息

Dev Cell. 2024 Jul 8;59(13):1655-1667.e6. doi: 10.1016/j.devcel.2024.04.003. Epub 2024 Apr 25.

Abstract

Proteotoxic stress drives numerous degenerative diseases. Cells initially adapt to misfolded proteins by activating the unfolded protein response (UPR), including endoplasmic-reticulum-associated protein degradation (ERAD). However, persistent stress triggers apoptosis. Enhancing ERAD is a promising therapeutic approach for protein misfolding diseases. The ER-localized Zn transporter ZIP7 is conserved from plants to humans and required for intestinal self-renewal, Notch signaling, cell motility, and survival. However, a unifying mechanism underlying these diverse phenotypes was unknown. In studying Drosophila border cell migration, we discovered that ZIP7-mediated Zn transport enhances the obligatory deubiquitination of proteins by the Rpn11 Zn metalloproteinase in the proteasome lid. In human cells, ZIP7 and Zn are limiting for deubiquitination. In a Drosophila model of neurodegeneration caused by misfolded rhodopsin (Rh1), ZIP7 overexpression degrades misfolded Rh1 and rescues photoreceptor viability and fly vision. Thus, ZIP7-mediated Zn transport is a previously unknown, rate-limiting step for ERAD in vivo with therapeutic potential in protein misfolding diseases.

摘要

蛋白毒性应激会引发许多退行性疾病。细胞最初通过激活未折叠蛋白反应(UPR),包括内质网相关蛋白降解(ERAD),来适应错误折叠的蛋白质。然而,持续的应激会引发细胞凋亡。增强 ERAD 是治疗蛋白质错误折叠疾病的一种有前途的方法。ER 定位的 Zn 转运蛋白 ZIP7 从植物到人类都是保守的,对于肠道自我更新、Notch 信号、细胞迁移和存活都是必需的。然而,这些不同表型的统一机制尚不清楚。在研究果蝇边界细胞迁移时,我们发现 ZIP7 介导的 Zn 转运增强了 Rpn11 Zn 金属蛋白酶在蛋白酶体盖中的必需去泛素化作用。在人类细胞中,ZIP7 和 Zn 是去泛素化的限制因素。在由错误折叠的视紫红质(Rh1)引起的果蝇神经退行性变模型中,ZIP7 的过表达降解了错误折叠的 Rh1,并挽救了感光器的存活和果蝇的视力。因此,ZIP7 介导的 Zn 转运是体内 ERAD 的一个以前未知的限速步骤,在蛋白质错误折叠疾病的治疗中有潜在的应用价值。

相似文献

本文引用的文献

1
4
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
7
Protein Misfolding and ER Stress in Huntington's Disease.亨廷顿舞蹈症中的蛋白质错误折叠与内质网应激
Front Mol Biosci. 2019 Apr 3;6:20. doi: 10.3389/fmolb.2019.00020. eCollection 2019.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验