Suppr超能文献

单体、二聚体和三聚体磁性硅烯超晶格中的自旋-谷极化与隧穿磁电阻。

Spin-valley polarization and tunneling magnetoresistance in monomer, dimer, and trimer magnetic silicene superlattices.

作者信息

Rojas-Briseño J G, Villasana-Mercado P, Molina-Valdovinos S, Oubram O, Rodríguez-Vargas I

机构信息

Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Circuto Marie Curie S/N, Parque de Ciencia y Tecnología QUANTUM Ciudad del Conocimiento, 98160 Zacatecas, Zacatecas, Mexico.

Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico.

出版信息

J Phys Condens Matter. 2024 May 9;36(31). doi: 10.1088/1361-648X/ad4440.

Abstract

Monomer, dimer and trimer semiconductor superlattices are an alternative for bandgap engineering due to the possibility of duplicate, triplicate, and in general multiply the number of minibands and minigaps in a specific energy region. Here, we show that monomer, dimer, and trimer magnetic silicene superlattices (MSSLs) can be the basis for tunable magnetoresistive devices due to the multiplication of the peaks of the tunneling magnetoresistance (TMR). In addition, these structures can serve as spin-valleytronic devices due to the formation of two well-defined spin-valley polarization states by appropriately adjusting the superlattice structural parameters. We obtain these conclusions by studying the spin-valley polarization and TMR of monomer, dimer, and trimer MSSLs. The magnetic unit cell is structured with one seed A with positive magnetization, and one, two, or three seeds B with variable magnetization. The number of B seeds defines the monomer, dimer, and trimer superlattice, while its magnetic orientation positive or negative the parallel (PM) or antiparallel magnetization (AM) superlattice configuration. The transfer matrix method and the Landauer-Büttiker formalism are employed to obtain the transmission and transport properties, respectively. We find multiplication of TMR peaks in staircase fashion according to the number of B seeds in the superlattice unit cell. This multiplication is related to the multiplication of the minibands which reflects as multiplication of the descending envelopes of the conductance. We also find well-defined polarization states for both PM and AM by adjusting asymmetrically the width and height of the barrier-well in seeds A and B.

摘要

单体、二聚体和三聚体半导体超晶格是带隙工程的一种选择,因为有可能在特定能量区域复制、三倍复制以及一般地成倍增加微带和微隙的数量。在此,我们表明,由于隧穿磁电阻(TMR)峰值的成倍增加,单体、二聚体和三聚体磁性硅烯超晶格(MSSLs)可以成为可调谐磁阻器件的基础。此外,通过适当调整超晶格结构参数形成两个明确的自旋 - 谷极化状态,这些结构可以用作自旋 - 谷电子器件。我们通过研究单体、二聚体和三聚体MSSLs的自旋 - 谷极化和TMR得出这些结论。磁性晶胞由一个具有正磁化强度的种子A和一个、两个或三个具有可变磁化强度的种子B构成。B种子的数量定义了单体、二聚体和三聚体超晶格,而其磁取向的正或负决定了平行(PM)或反平行磁化(AM)超晶格构型。分别采用转移矩阵法和朗道尔 - 布蒂克尔形式来获得传输和输运性质。我们发现,根据超晶格晶胞中B种子的数量,TMR峰值呈阶梯状成倍增加。这种成倍增加与微带的成倍增加有关,微带的成倍增加反映为电导下降包络的成倍增加。我们还通过不对称地调整种子A和B中势垒 - 阱的宽度和高度,发现了PM和AM的明确极化状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验