Rojas-Briseño J G, Villasana-Mercado P, Briones-Torres J A, Oubram O, Molina-Valdovinos S, Rodríguez-Vargas I
Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km. 6, Ejido La Escondida, 98160 Zacatecas, Zacatecas, Mexico.
Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Avenida Universidad 3000, Col. Lomas de la Universidad, 59103 Sahuayo, Michoacán, Mexico.
J Phys Condens Matter. 2022 Jun 6;34(30). doi: 10.1088/1361-648X/ac709c.
Magnetic silicene junctions are versatile structures with spin-valley polarization and magnetoresistive capabilities. Here, we investigate the temperature effects on the transport properties of single magnetic silicene junctions. We use the transfer matrix method and the Landauer-Büttiker formalism to calculate the transmittance, conductance, spin-valley polarization and tunneling magnetoresistance (TMR). We studied the case for= 0 K, finding the specific parameters where the spin-valley polarization and the TMR reach optimized values. Regarding the temperature effects, we find that its impact is not the same on the different transport properties. In the case of the conductance, depending on the spin-valley configuration the resonant peaks disappear at different temperatures. The spin polarization persists at a considerable value up to= 80 K, contrary to the valley polarization which is more susceptible to the temperature effects. In addition, a stepwise spin-valley polarization can be achieved at low temperature. The TMR is attenuated considerably as the temperature rises, decreasing more than two orders of magnitude after= 20 K. These findings indicate that in order to preserve the spin-valley polarization and magnetoresistive capabilities of magnetic silicene junctions is fundamental to modulate the temperature adequately.
磁性硅烯结是具有自旋-谷极化和磁阻能力的多功能结构。在此,我们研究温度对单个磁性硅烯结输运性质的影响。我们使用转移矩阵方法和朗道尔-布蒂克尔形式理论来计算透射率、电导、自旋-谷极化和隧穿磁阻(TMR)。我们研究了T = 0 K的情况,找到了自旋-谷极化和TMR达到优化值的特定参数。关于温度效应,我们发现其对不同输运性质的影响并不相同。在电导方面,根据自旋-谷构型,共振峰在不同温度下消失。自旋极化在高达T = 80 K时仍保持相当大的值,这与谷极化更容易受到温度效应影响相反。此外,在低温下可以实现逐步的自旋-谷极化。随着温度升高,TMR显著衰减,在T = 20 K后下降超过两个数量级。这些发现表明,为了保持磁性硅烯结的自旋-谷极化和磁阻能力,充分调节温度至关重要。