Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec, Canada.
mila-Quebec AI Institute, Montréal, Quebec, Canada.
Phys Med Biol. 2024 May 21;69(11). doi: 10.1088/1361-6560/ad4448.
Treatment plan optimization in high dose rate brachytherapy often requires manual fine-tuning of penalty weights for each objective, which can be time-consuming and dependent on the planner's experience. To automate this process, this study used a multi-criteria approach called multi-objective Bayesian optimization with q-noisy expected hypervolume improvement as its acquisition function (MOBO-qNEHVI).The treatment plans of 13 prostate cancer patients were retrospectively imported to a research treatment planning system, RapidBrachyMTPS, where fast mixed integer optimization (FMIO) performs dwell time optimization given a set of penalty weights to deliver 15 Gy to the target volume. MOBO-qNEHVI was used to find patient-specific Pareto optimal penalty weight vectors that yield clinically acceptable dose volume histogram metrics. The relationship between the number of MOBO-qNEHVI iterations and the number of clinically acceptable plans per patient (acceptance rate) was investigated. The performance time was obtained for various parameter configurations.MOBO-qNEHVI found clinically acceptable treatment plans for all patients. With increasing the number of MOBO-qNEHVI iterations, the acceptance rate grew logarithmically while the performance time grew exponentially. Fixing the penalty weight of the tumour volume to maximum value, adding the target dose as a parameter, initiating MOBO-qNEHVI with 25 parallel sampling of FMIO, and running 6 MOBO-qNEHVI iterations found solutions that delivered 15 Gy to the hottest 95% of the clinical target volume while respecting the dose constraints to the organs at risk. The average acceptance rate for each patient was 89.74% ± 8.11%, and performance time was 66.6 ± 12.6 s. The initiation took 22.47 ± 7.57 s, and each iteration took 7.35 ± 2.45 s to find one Pareto solution.MOBO-qNEHVI combined with FMIO can automatically explore the trade-offs between treatment plan objectives in a patient specific manner within a minute. This approach can reduce the dependency of plan quality on planner's experience and reduce dose to the organs at risk.
高剂量率近距离治疗计划的优化通常需要手动微调每个目标的罚值,这可能既耗时又依赖于计划者的经验。为了实现这一过程的自动化,本研究采用了一种多准则方法,称为多目标贝叶斯优化,其获取函数为 q-噪声期望超体积改进(MOBO-qNEHVI)。将 13 例前列腺癌患者的治疗计划回顾性导入研究性治疗计划系统 RapidBrachyMTPS,其中快速混合整数优化(FMIO)在给定一组罚值的情况下执行驻留时间优化,以将 15Gy 输送到靶体积。MOBO-qNEHVI 用于找到特定于患者的帕累托最优罚值向量,从而产生临床可接受的剂量体积直方图指标。研究了 MOBO-qNEHVI 迭代次数与每位患者获得临床可接受计划的数量(接受率)之间的关系。还获得了各种参数配置的性能时间。MOBO-qNEHVI 为所有患者找到了临床可接受的治疗计划。随着 MOBO-qNEHVI 迭代次数的增加,接受率呈对数增长,而性能时间呈指数增长。将肿瘤体积的罚值固定为最大值,将目标剂量作为参数添加,使用 25 个 FMIO 的并行采样启动 MOBO-qNEHVI,并运行 6 次 MOBO-qNEHVI 迭代,找到了将 15Gy 输送到临床靶体积最热的 95%的同时,还遵守了对危险器官的剂量限制的解决方案。每位患者的平均接受率为 89.74%±8.11%,性能时间为 66.6±12.6s。启动时间为 22.47±7.57s,每次迭代需要 7.35±2.45s 来找到一个帕累托解决方案。MOBO-qNEHVI 与 FMIO 相结合,可以在一分钟内以患者特定的方式自动探索治疗计划目标之间的权衡。这种方法可以减少计划质量对计划者经验的依赖,并降低对危险器官的剂量。