Ye Chen, Shao Peng, Zhang Shaoping, Wang Wentao
School of Computer and Information Engineering, Jiangxi Agricultural University, 330045, China.
School of Computer and Information Engineering, Jiangxi Agricultural University, 330045, China.
ISA Trans. 2024 Jun;149:196-216. doi: 10.1016/j.isatra.2024.04.010. Epub 2024 Apr 15.
In real terrain and dynamic obstacle scenarios, the complexity of the 3D UAV path planning problem greatly increases. Thus, to procure the optimal flight path for UAVs in such scenarios, an augmented Artificial Gorilla Troops Optimizer, denoted as OQMGTO, is proposed. The proposed OQMGTO algorithm introduces three strategies: combination mutation, quadratic interpolation, and random opposition-based learning, aiming to enhance the ability to timely escape from local optimal path areas and rapidly converge to the global optimal path. Given the flight distance, smoothness, terrain collision, and other five realistic factors of UAVs, specific constraint conditions are proposed to address complex scenarios, aiming to construct a path planning model. By optimizing this model, OQMGTO algorithm solves the path planning problem in complex scenarios. The extensive validation of OQMGTO algorithm on CEC2017 test suite enhances its credibility as a powerful optimization tool. Comparison experiments are conducted in simulated terrain scenarios, including six multi-obstacle terrain scenarios and three dynamic obstacle scenarios. The experimental findings validate OOMGTO algorithm can assist UAV in searching for excellent flight paths, featuring high safety and reliability characteristics, which confirms the superiority of OOMGTO algorithm for path planning in simulated terrain scenarios. Furthermore, in four flight missions carried out in real terrains, OQMGTO algorithm demonstrates superior search performance, planning smooth trajectories without mountain collision.
在真实地形和动态障碍物场景中,无人机三维路径规划问题的复杂度大幅增加。因此,为了在这类场景中为无人机获取最优飞行路径,提出了一种改进的人工大猩猩部队优化器,记为OQMGTO。所提出的OQMGTO算法引入了三种策略:组合变异、二次插值和基于随机反向学习,旨在增强及时逃离局部最优路径区域并快速收敛到全局最优路径的能力。考虑到无人机的飞行距离、平滑度、地形碰撞等五个现实因素,提出了特定的约束条件来处理复杂场景,旨在构建一个路径规划模型。通过优化该模型,OQMGTO算法解决了复杂场景中的路径规划问题。OQMGTO算法在CEC2017测试套件上的广泛验证增强了其作为强大优化工具的可信度。在模拟地形场景中进行了对比实验,包括六个多障碍物地形场景和三个动态障碍物场景。实验结果验证了OOMGTO算法能够辅助无人机搜索出具有高安全性和可靠性的优良飞行路径,这证实了OOMGTO算法在模拟地形场景中进行路径规划的优越性。此外,在真实地形中执行的四次飞行任务中,OQMGTO算法展示了卓越的搜索性能,规划出的轨迹平滑且无山体碰撞。