Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Sci Rep. 2024 Apr 26;14(1):9617. doi: 10.1038/s41598-024-60277-2.
Brain-computer interfaces (BCIs) that reconstruct and synthesize speech using brain activity recorded with intracranial electrodes may pave the way toward novel communication interfaces for people who have lost their ability to speak, or who are at high risk of losing this ability, due to neurological disorders. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a man with impaired articulation due to ALS, participating in a clinical trial (ClinicalTrials.gov, NCT03567213) exploring different strategies for BCI communication. The 3-stage approach reported here relies on recurrent neural networks to identify, decode and synthesize speech from electrocorticographic (ECoG) signals acquired across motor, premotor and somatosensory cortices. We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the participant from a vocabulary of 6 keywords previously used for decoding commands to control a communication board. Evaluation of the intelligibility of the synthesized speech indicates that 80% of the words can be correctly recognized by human listeners. Our results show that a speech-impaired individual with ALS can use a chronically implanted BCI to reliably produce synthesized words while preserving the participant's voice profile, and provide further evidence for the stability of ECoG for speech-based BCIs.
脑-机接口(BCI)利用颅内电极记录的大脑活动来重建和合成语音,这可能为因神经疾病而丧失说话能力或有丧失这种能力风险的人开辟新的通信接口。在这里,我们报告了一名因 ALS 而发音受损的患者在一项临床试验(ClinicalTrials.gov,NCT03567213)中使用慢性植入脑-机接口(BCI)在线合成可理解单词的情况,该试验正在探索不同的 BCI 通信策略。这里报告的 3 阶段方法依赖于递归神经网络,以从运动、运动前和躯体感觉皮层采集的脑电图(ECoG)信号中识别、解码和合成语音。我们展示了一个可靠的 BCI,该 BCI 可以从参与者之前用于解码命令以控制通信板的 6 个关键字的词汇中自由选择和说出命令,并对其进行合成。对合成语音的可理解性的评估表明,80%的单词可以被人类听众正确识别。我们的研究结果表明,发音受损的 ALS 患者可以使用慢性植入 BCI 可靠地生成合成单词,同时保留参与者的语音特征,并进一步证明了 ECoG 用于基于语音的 BCI 的稳定性。