Department of Statistics, COMSATS University Islamabad, Lahore Campus, Islamabad, Pakistan.
Department of Statistics, Abdul Wali Khan University Mardan, Mardan, Pakistan.
Sci Rep. 2024 Apr 26;14(1):9633. doi: 10.1038/s41598-024-60285-2.
In the current study, we demonstrate the use of a quality framework to review the process for improving the quality and safety of the patient in the health care department. The researchers paid attention to assessing the performance of the health care service, where the data is usually heterogeneous to patient's health conditions. In our study, the support vector machine (SVM) regression model is used to handle the challenge of adjusting the risk factors attached to the patients. Further, the design of exponentially weighted moving average (EWMA) control charts is proposed based on the residuals obtained through SVM regression model. Analyzing real cardiac surgery patient data, we employed the SVM method to gauge patient condition. The resulting SVM-EWMA chart, fashioned via SVM modeling, revealed superior shift detection capabilities and demonstrated enhanced efficacy compared to the risk-adjusted EWMA control chart.
在当前的研究中,我们展示了使用质量框架来审查改善医疗保健部门患者质量和安全的过程。研究人员注意评估医疗服务的性能,其中数据通常因患者的健康状况而异。在我们的研究中,支持向量机 (SVM) 回归模型用于处理调整与患者相关的风险因素的挑战。此外,基于通过 SVM 回归模型获得的残差,提出了指数加权移动平均 (EWMA) 控制图的设计。通过分析真实的心脏手术患者数据,我们采用 SVM 方法来评估患者状况。通过 SVM 建模形成的 SVM-EWMA 图表显示出优越的移位检测能力,并证明比风险调整的 EWMA 控制图更有效。