Suppr超能文献

基于支持向量机的风险调整 EWMA 控制图及其在心脏手术数据中的应用。

Risk adjusted EWMA control chart based on support vector machine with application to cardiac surgery data.

机构信息

Department of Statistics, COMSATS University Islamabad, Lahore Campus, Islamabad, Pakistan.

Department of Statistics, Abdul Wali Khan University Mardan, Mardan, Pakistan.

出版信息

Sci Rep. 2024 Apr 26;14(1):9633. doi: 10.1038/s41598-024-60285-2.

Abstract

In the current study, we demonstrate the use of a quality framework to review the process for improving the quality and safety of the patient in the health care department. The researchers paid attention to assessing the performance of the health care service, where the data is usually heterogeneous to patient's health conditions. In our study, the support vector machine (SVM) regression model is used to handle the challenge of adjusting the risk factors attached to the patients. Further, the design of exponentially weighted moving average (EWMA) control charts is proposed based on the residuals obtained through SVM regression model. Analyzing real cardiac surgery patient data, we employed the SVM method to gauge patient condition. The resulting SVM-EWMA chart, fashioned via SVM modeling, revealed superior shift detection capabilities and demonstrated enhanced efficacy compared to the risk-adjusted EWMA control chart.

摘要

在当前的研究中,我们展示了使用质量框架来审查改善医疗保健部门患者质量和安全的过程。研究人员注意评估医疗服务的性能,其中数据通常因患者的健康状况而异。在我们的研究中,支持向量机 (SVM) 回归模型用于处理调整与患者相关的风险因素的挑战。此外,基于通过 SVM 回归模型获得的残差,提出了指数加权移动平均 (EWMA) 控制图的设计。通过分析真实的心脏手术患者数据,我们采用 SVM 方法来评估患者状况。通过 SVM 建模形成的 SVM-EWMA 图表显示出优越的移位检测能力,并证明比风险调整的 EWMA 控制图更有效。

相似文献

3
Exponentially weighted moving average-Moving average charts for monitoring the process mean.
PLoS One. 2020 Feb 14;15(2):e0228208. doi: 10.1371/journal.pone.0228208. eCollection 2020.
4
A nonparametric mixed exponentially weighted moving average-moving average control chart with an application to gas turbines.
PLoS One. 2024 Aug 13;19(8):e0307559. doi: 10.1371/journal.pone.0307559. eCollection 2024.
7
Monitoring air quality index with EWMA and individual charts using XGBoost and SVR residuals.
MethodsX. 2024 Dec 12;14:103107. doi: 10.1016/j.mex.2024.103107. eCollection 2025 Jun.
8
A simple approach for monitoring business service time variation.
ScientificWorldJournal. 2014;2014:238719. doi: 10.1155/2014/238719. Epub 2014 May 7.
9
A one-sided exponentially weighted moving average control chart for time between events.
J Appl Stat. 2021 Aug 21;49(15):3928-3957. doi: 10.1080/02664763.2021.1967894. eCollection 2022.
10
Improved Statistical Fault Detection Technique and Application to Biological Phenomena Modeled by S-Systems.
IEEE Trans Nanobioscience. 2017 Sep;16(6):504-512. doi: 10.1109/TNB.2017.2726144. Epub 2017 Jul 12.

本文引用的文献

1
Comparison of control charts for monitoring clinical performance using binary data.
BMJ Qual Saf. 2017 Nov;26(11):919-928. doi: 10.1136/bmjqs-2016-005526. Epub 2017 Sep 25.
2
Dynamic probability control limits for risk-adjusted CUSUM charts based on multiresponses.
Stat Med. 2017 Jul 20;36(16):2547-2558. doi: 10.1002/sim.7312. Epub 2017 Apr 19.
4
Risk-adjusted monitoring of survival times.
Stat Med. 2009 Apr 30;28(9):1386-401. doi: 10.1002/sim.3546.
5
A risk-adjusted CUSUM in continuous time based on the Cox model.
Stat Med. 2008 Jul 30;27(17):3382-406. doi: 10.1002/sim.3216.
6
Monitoring surgical performance using risk-adjusted cumulative sum charts.
Biostatistics. 2000 Dec;1(4):441-52. doi: 10.1093/biostatistics/1.4.441.
7
Monitoring the evolutionary process of quality: risk-adjusted charting to track outcomes in intensive care.
Crit Care Med. 2003 Jun;31(6):1676-82. doi: 10.1097/01.CCM.0000065273.63224.A8.
8
Monitoring paired binary surgical outcomes using cumulative sum charts.
Stat Med. 1999 Jan 15;18(1):69-86. doi: 10.1002/(sici)1097-0258(19990115)18:1<69::aid-sim966>3.0.co;2-l.
10
Monitoring the results of cardiac surgery by variable life-adjusted display.
Lancet. 1997 Oct 18;350(9085):1128-30. doi: 10.1016/S0140-6736(97)06507-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验