Suppr超能文献

通过Adam和RanAdam超参数调优提高从微阵列数据检测肺癌的分类器性能——追求精准度

Enhancement of Classifier Performance with Adam and RanAdam Hyper-Parameter Tuning for Lung Cancer Detection from Microarray Data-In Pursuit of Precision.

作者信息

M S Karthika, Rajaguru Harikumar, Nair Ajin R

机构信息

Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam 638401, India.

Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638401, India.

出版信息

Bioengineering (Basel). 2024 Mar 26;11(4):314. doi: 10.3390/bioengineering11040314.

Abstract

Microarray gene expression analysis is a powerful technique used in cancer classification and research to identify and understand gene expression patterns that can differentiate between different cancer types, subtypes, and stages. However, microarray databases are highly redundant, inherently nonlinear, and noisy. Therefore, extracting meaningful information from such a huge database is a challenging one. The paper adopts the Fast Fourier Transform (FFT) and Mixture Model (MM) for dimensionality reduction and utilises the Dragonfly optimisation algorithm as the feature selection technique. The classifiers employed in this research are Nonlinear Regression, Naïve Bayes, Decision Tree, Random Forest and SVM (RBF). The classifiers' performances are analysed with and without feature selection methods. Finally, Adaptive Moment Estimation (Adam) and Random Adaptive Moment Estimation (RanAdam) hyper-parameter tuning techniques are used as improvisation techniques for classifiers. The SVM (RBF) classifier with the Fast Fourier Transform Dimensionality Reduction method and Dragonfly feature selection achieved the highest accuracy of 98.343% with RanAdam hyper-parameter tuning compared to other classifiers.

摘要

微阵列基因表达分析是一种强大的技术,用于癌症分类和研究,以识别和理解能够区分不同癌症类型、亚型和阶段的基因表达模式。然而,微阵列数据库具有高度冗余、固有非线性和噪声大的特点。因此,从如此庞大的数据库中提取有意义的信息是一项具有挑战性的任务。本文采用快速傅里叶变换(FFT)和混合模型(MM)进行降维,并利用蜻蜓优化算法作为特征选择技术。本研究中使用的分类器有非线性回归、朴素贝叶斯、决策树、随机森林和支持向量机(RBF)。在有无特征选择方法的情况下分析分类器的性能。最后,使用自适应矩估计(Adam)和随机自适应矩估计(RanAdam)超参数调整技术作为分类器的改进技术。与其他分类器相比,采用快速傅里叶变换降维方法和蜻蜓特征选择的支持向量机(RBF)分类器在RanAdam超参数调整下达到了98.343%的最高准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a224/11047746/bb2bb289bc1e/bioengineering-11-00314-g001.jpg

相似文献

2
Performance enhancement of classifiers through Bio inspired feature selection methods for early detection of lung cancer from microarray genes.
Heliyon. 2024 Aug 17;10(16):e36419. doi: 10.1016/j.heliyon.2024.e36419. eCollection 2024 Aug 30.
7
Detection of Diabetes through Microarray Genes with Enhancement of Classifiers Performance.
Diagnostics (Basel). 2023 Aug 11;13(16):2654. doi: 10.3390/diagnostics13162654.
9
A Holistic Performance Comparison for Lung Cancer Classification Using Swarm Intelligence Techniques.
J Healthc Eng. 2021 Jul 29;2021:6680424. doi: 10.1155/2021/6680424. eCollection 2021.
10
Exploration and Enhancement of Classifiers in the Detection of Lung Cancer from Histopathological Images.
Diagnostics (Basel). 2023 Oct 23;13(20):3289. doi: 10.3390/diagnostics13203289.

本文引用的文献

2
GMMchi: gene expression clustering using Gaussian mixture modeling.
BMC Bioinformatics. 2022 Nov 2;23(1):457. doi: 10.1186/s12859-022-05006-0.
3
Deep learning techniques for cancer classification using microarray gene expression data.
Front Physiol. 2022 Sep 30;13:952709. doi: 10.3389/fphys.2022.952709. eCollection 2022.
4
An Efficient Cancer Classification Model Using Microarray and High-Dimensional Data.
Comput Intell Neurosci. 2021 Dec 29;2021:7231126. doi: 10.1155/2021/7231126. eCollection 2021.
5
Feature selection methods on gene expression microarray data for cancer classification: A systematic review.
Comput Biol Med. 2022 Jan;140:105051. doi: 10.1016/j.compbiomed.2021.105051. Epub 2021 Nov 23.
7
Identification of Overexpressed Genes in Malignant Pleural Mesothelioma.
Int J Mol Sci. 2021 Mar 8;22(5):2738. doi: 10.3390/ijms22052738.
8
The Japanese respiratory society guidelines for the management of cough and sputum (digest edition).
Respir Investig. 2021 May;59(3):270-290. doi: 10.1016/j.resinv.2021.01.007. Epub 2021 Feb 26.
9
Weighted dimensionality reduction and robust Gaussian mixture model based cancer patient subtyping from gene expression data.
J Biomed Inform. 2020 Dec;112:103620. doi: 10.1016/j.jbi.2020.103620. Epub 2020 Nov 11.
10
Minimalist approaches to cancer tissue-of-origin classification by DNA methylation.
Mod Pathol. 2020 Oct;33(10):1874-1888. doi: 10.1038/s41379-020-0547-7. Epub 2020 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验