M S Karthika, Rajaguru Harikumar, Nair Ajin R
Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam 638401, India.
Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638401, India.
Bioengineering (Basel). 2024 Mar 26;11(4):314. doi: 10.3390/bioengineering11040314.
Microarray gene expression analysis is a powerful technique used in cancer classification and research to identify and understand gene expression patterns that can differentiate between different cancer types, subtypes, and stages. However, microarray databases are highly redundant, inherently nonlinear, and noisy. Therefore, extracting meaningful information from such a huge database is a challenging one. The paper adopts the Fast Fourier Transform (FFT) and Mixture Model (MM) for dimensionality reduction and utilises the Dragonfly optimisation algorithm as the feature selection technique. The classifiers employed in this research are Nonlinear Regression, Naïve Bayes, Decision Tree, Random Forest and SVM (RBF). The classifiers' performances are analysed with and without feature selection methods. Finally, Adaptive Moment Estimation (Adam) and Random Adaptive Moment Estimation (RanAdam) hyper-parameter tuning techniques are used as improvisation techniques for classifiers. The SVM (RBF) classifier with the Fast Fourier Transform Dimensionality Reduction method and Dragonfly feature selection achieved the highest accuracy of 98.343% with RanAdam hyper-parameter tuning compared to other classifiers.
微阵列基因表达分析是一种强大的技术,用于癌症分类和研究,以识别和理解能够区分不同癌症类型、亚型和阶段的基因表达模式。然而,微阵列数据库具有高度冗余、固有非线性和噪声大的特点。因此,从如此庞大的数据库中提取有意义的信息是一项具有挑战性的任务。本文采用快速傅里叶变换(FFT)和混合模型(MM)进行降维,并利用蜻蜓优化算法作为特征选择技术。本研究中使用的分类器有非线性回归、朴素贝叶斯、决策树、随机森林和支持向量机(RBF)。在有无特征选择方法的情况下分析分类器的性能。最后,使用自适应矩估计(Adam)和随机自适应矩估计(RanAdam)超参数调整技术作为分类器的改进技术。与其他分类器相比,采用快速傅里叶变换降维方法和蜻蜓特征选择的支持向量机(RBF)分类器在RanAdam超参数调整下达到了98.343%的最高准确率。