Suppr超能文献

氧化应激:糖尿病肾病进展的罪魁祸首。

Oxidative Stress: A Culprit in the Progression of Diabetic Kidney Disease.

作者信息

Wang Na, Zhang Chun

机构信息

Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

出版信息

Antioxidants (Basel). 2024 Apr 12;13(4):455. doi: 10.3390/antiox13040455.

Abstract

Diabetic kidney disease (DKD) is the principal culprit behind chronic kidney disease (CKD), ultimately developing end-stage renal disease (ESRD) and necessitating costly dialysis or kidney transplantation. The limited therapeutic efficiency among individuals with DKD is a result of our finite understanding of its pathogenesis. DKD is the result of complex interactions between various factors. Oxidative stress is a fundamental factor that can establish a link between hyperglycemia and the vascular complications frequently encountered in diabetes, particularly DKD. It is crucial to recognize the essential and integral role of oxidative stress in the development of diabetic vascular complications, particularly DKD. Hyperglycemia is the primary culprit that can trigger an upsurge in the production of reactive oxygen species (ROS), ultimately sparking oxidative stress. The main endogenous sources of ROS include mitochondrial ROS production, NADPH oxidases (Nox), uncoupled endothelial nitric oxide synthase (eNOS), xanthine oxidase (XO), cytochrome P450 (CYP450), and lipoxygenase. Under persistent high glucose levels, immune cells, the complement system, advanced glycation end products (AGEs), protein kinase C (PKC), polyol pathway, and the hexosamine pathway are activated. Consequently, the oxidant-antioxidant balance within the body is disrupted, which triggers a series of reactions in various downstream pathways, including phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor beta/p38-mitogen-activated protein kinase (TGF-β/p38-MAPK), nuclear factor kappa B (NF-κB), adenosine monophosphate-activated protein kinase (AMPK), and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. The disease might persist even if strict glucose control is achieved, which can be attributed to epigenetic modifications. The treatment of DKD remains an unresolved issue. Therefore, reducing ROS is an intriguing therapeutic target. The clinical trials have shown that bardoxolone methyl, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, blood glucose-lowering drugs, such as sodium-glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists can effectively slow down the progression of DKD by reducing oxidative stress. Other antioxidants, including vitamins, lipoic acid, Nox inhibitors, epigenetic regulators, and complement inhibitors, present a promising therapeutic option for the treatment of DKD. In this review, we conduct a thorough assessment of both preclinical studies and current findings from clinical studies that focus on targeted interventions aimed at manipulating these pathways. We aim to provide a comprehensive overview of the current state of research in this area and identify key areas for future exploration.

摘要

糖尿病肾病(DKD)是慢性肾脏病(CKD)的主要病因,最终会发展为终末期肾病(ESRD),并需要进行昂贵的透析或肾脏移植。DKD患者的治疗效果有限,是因为我们对其发病机制的了解有限。DKD是多种因素复杂相互作用的结果。氧化应激是一个基本因素,它可以在高血糖与糖尿病常见的血管并发症(尤其是DKD)之间建立联系。认识到氧化应激在糖尿病血管并发症(尤其是DKD)发生发展中的重要和不可或缺的作用至关重要。高血糖是引发活性氧(ROS)生成激增、最终引发氧化应激的主要原因。ROS的主要内源性来源包括线粒体ROS生成、NADPH氧化酶(Nox)、解偶联内皮型一氧化氮合酶(eNOS)、黄嘌呤氧化酶(XO)、细胞色素P450(CYP450)和脂氧合酶。在持续高血糖水平下,免疫细胞、补体系统、晚期糖基化终产物(AGEs)、蛋白激酶C(PKC)、多元醇途径和己糖胺途径被激活。因此,体内的氧化还原平衡被打破,这会在各种下游途径引发一系列反应,包括磷酸肌醇3激酶/蛋白激酶B(PI3K/Akt)、转化生长因子β/p38丝裂原活化蛋白激酶(TGF-β/p38-MAPK)、核因子κB(NF-κB)、腺苷单磷酸活化蛋白激酶(AMPK)以及 Janus激酶/信号转导和转录激活因子(JAK/STAT)信号通路。即使实现了严格的血糖控制,疾病仍可能持续,这可能归因于表观遗传修饰。DKD的治疗仍然是一个未解决的问题。因此,减少ROS是一个引人关注的治疗靶点。临床试验表明,核因子红细胞2相关因子2(Nrf2)激活剂巴多昔芬甲基、降糖药物(如钠-葡萄糖协同转运蛋白2抑制剂)以及胰高血糖素样肽-1受体激动剂可以通过降低氧化应激有效减缓DKD的进展。其他抗氧化剂,包括维生素、硫辛酸、Nox抑制剂、表观遗传调节剂和补体抑制剂,为DKD的治疗提供了一种有前景的治疗选择。在本综述中,我们对临床前研究和当前临床研究结果进行了全面评估,这些研究聚焦于旨在调控这些途径的靶向干预措施。我们旨在全面概述该领域的当前研究状况,并确定未来探索的关键领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f077/11047699/5dc44908c9ca/antioxidants-13-00455-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验