Suppr超能文献

自动化机器学习预测脑胶质瘤患者异柠檬酸脱氢酶突变和 O-甲基鸟嘌呤-DNA 甲基转移酶启动子甲基化的共现。

Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O -methylguanine-DNA methyltransferase promoter methylation in patients with gliomas.

机构信息

Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.

Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China.

出版信息

J Magn Reson Imaging. 2021 Jul;54(1):197-205. doi: 10.1002/jmri.27498. Epub 2021 Jan 3.

Abstract

Combining isocitrate dehydrogenase mutation (IDHmut) with O -methylguanine-DNA methyltransferase promoter methylation (MGMTmet) has been identified as a critical prognostic molecular marker for gliomas. The aim of this study was to determine the ability of glioma radiomics features from magnetic resonance imaging (MRI) to predict the co-occurrence of IDHmut and MGMTmet by applying the tree-based pipeline optimization tool (TPOT), an automated machine learning (autoML) approach. This was a retrospective study, in which 162 patients with gliomas were evaluated, including 58 patients with co-occurrence of IDHmut and MGMTmet and 104 patients with other status comprising: IDH wildtype and MGMT unmethylated (n = 67), IDH wildtype and MGMTmet (n = 36), and IDHmut and MGMT unmethylated (n = 1). Three-dimensional (3D) T1-weighted images, gadolinium-enhanced 3D T1-weighted images (Gd-3DT1WI), T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images acquired at 3.0 T were used. Radiomics features were extracted from FLAIR and Gd-3DT1WI images. The TPOT was employed to generate the best machine learning pipeline, which contains both feature selector and classifier, based on input feature sets. A 4-fold cross-validation was used to evaluate the performance of automatically generated models. For each iteration, the training set included 121 subjects, while the test set included 41 subjects. Student's t-test or a chi-square test was applied on different clinical characteristics between two groups. Sensitivity, specificity, accuracy, kappa score, and AUC were used to evaluate the performance of TPOT-generated models. Finally, we compared the above metrics of TPOT-generated models to identify the best-performing model. Patients' ages and grades between two groups were significantly different (p = 0.002 and p = 0.000, respectively). The 4-fold cross-validation showed that gradient boosting classifier trained on shape and textual features from the Laplacian-of-Gaussian-filtered Gd-3DT1 achieved the best performance (average sensitivity = 81.1%, average specificity = 94%, average accuracy = 89.4%, average kappa score = 0.76, average AUC = 0.951). Using autoML based on radiomics features from MRI, a high discriminatory accuracy was achieved for predicting co-occurrence of IDHmut and MGMTmet in gliomas. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 3.

摘要

异柠檬酸脱氢酶突变 (IDHmut) 与 O-甲基鸟嘌呤-DNA 甲基转移酶启动子甲基化 (MGMTmet) 的联合已被确定为胶质瘤的重要预后分子标志物。本研究旨在通过应用基于树的管道优化工具 (TPOT),即自动化机器学习 (autoML) 方法,确定从磁共振成像 (MRI) 获得的胶质瘤放射组学特征预测 IDHmut 和 MGMTmet 共同发生的能力。这是一项回顾性研究,评估了 162 名胶质瘤患者,其中 58 名患者 IDHmut 和 MGMTmet 共同发生,104 名患者具有其他状态:IDH 野生型和 MGMT 未甲基化 (n=67),IDH 野生型和 MGMTmet (n=36),以及 IDHmut 和 MGMT 未甲基化 (n=1)。使用 3.0T 获得三维 (3D) T1 加权图像、钆增强 3D T1 加权图像 (Gd-3DT1WI)、T2 加权图像和液体衰减反转恢复 (FLAIR) 图像。从 FLAIR 和 Gd-3DT1WI 图像中提取放射组学特征。基于输入特征集,TPOT 生成最佳机器学习管道,其中包含特征选择器和分类器。使用 4 折交叉验证评估自动生成模型的性能。对于每次迭代,训练集包括 121 名受试者,而测试集包括 41 名受试者。两组间不同临床特征的比较采用 Student's t 检验或卡方检验。灵敏度、特异性、准确性、kappa 评分和 AUC 用于评估 TPOT 生成模型的性能。最后,我们比较了 TPOT 生成模型的上述指标,以确定性能最佳的模型。两组间患者年龄和分级差异均有统计学意义 (p=0.002 和 p=0.000)。4 折交叉验证显示,基于拉普拉斯滤波的 Gd-3DT1 图像的形状和纹理特征训练的梯度提升分类器表现最佳(平均灵敏度=81.1%,平均特异性=94%,平均准确率=89.4%,平均 kappa 评分=0.76,平均 AUC=0.951)。使用基于 MRI 放射组学特征的 autoML,可以实现对胶质瘤中 IDHmut 和 MGMTmet 共同发生的高判别准确性。证据水平:3 技术功效分期:3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验