用于轻量级鸽蛋检测的改进YOLOv8模型

Improved YOLOv8 Model for Lightweight Pigeon Egg Detection.

作者信息

Jiang Tao, Zhou Jie, Xie Binbin, Liu Longshen, Ji Chengyue, Liu Yao, Liu Binghan, Zhang Bo

机构信息

College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China.

Key Laboratory of Breeding Equipment, Ministry of Agriculture and Rural Affairs, Nanjing 210031, China.

出版信息

Animals (Basel). 2024 Apr 19;14(8):1226. doi: 10.3390/ani14081226.

Abstract

In response to the high breakage rate of pigeon eggs and the significant labor costs associated with egg-producing pigeon farming, this study proposes an improved YOLOv8-PG (real versus fake pigeon egg detection) model based on YOLOv8n. Specifically, the Bottleneck in the C2f module of the YOLOv8n backbone network and neck network are replaced with Fasternet-EMA Block and Fasternet Block, respectively. The Fasternet Block is designed based on PConv (Partial Convolution) to reduce model parameter count and computational load efficiently. Furthermore, the incorporation of the EMA (Efficient Multi-scale Attention) mechanism helps mitigate interference from complex environments on pigeon-egg feature-extraction capabilities. Additionally, Dysample, an ultra-lightweight and effective upsampler, is introduced into the neck network to further enhance performance with lower computational overhead. Finally, the EXPMA (exponential moving average) concept is employed to optimize the SlideLoss and propose the EMASlideLoss classification loss function, addressing the issue of imbalanced data samples and enhancing the model's robustness. The experimental results showed that the F1-score, mAP50-95, and mAP75 of YOLOv8-PG increased by 0.76%, 1.56%, and 4.45%, respectively, compared with the baseline YOLOv8n model. Moreover, the model's parameter count and computational load are reduced by 24.69% and 22.89%, respectively. Compared to detection models such as Faster R-CNN, YOLOv5s, YOLOv7, and YOLOv8s, YOLOv8-PG exhibits superior performance. Additionally, the reduction in parameter count and computational load contributes to lowering the model deployment costs and facilitates its implementation on mobile robotic platforms.

摘要

针对鸽蛋破损率高以及蛋用鸽养殖相关劳动力成本高昂的问题,本研究基于YOLOv8n提出了一种改进的YOLOv8-PG(真假鸽蛋检测)模型。具体而言,YOLOv8n主干网络和颈部网络的C2f模块中的瓶颈分别被Fasternet-EMA模块和Fasternet模块所取代。Fasternet模块基于局部卷积(PConv)设计,以有效减少模型参数数量和计算量。此外,引入高效多尺度注意力(EMA)机制有助于减轻复杂环境对鸽蛋特征提取能力的干扰。另外,将超轻量级且有效的上采样器Dysample引入颈部网络,以进一步提升性能且降低计算开销。最后,采用指数移动平均(EXPMA)概念优化滑动损失(SlideLoss),并提出EMASlideLoss分类损失函数,解决数据样本不平衡问题,增强模型的鲁棒性。实验结果表明,与基线YOLOv8n模型相比,YOLOv8-PG的F1分数、mAP50-95和mAP75分别提高了0.76%、1.56%和4.45%。此外,该模型的参数数量和计算量分别减少了24.69%和22.89%。与Faster R-CNN、YOLOv5s、YOLOv7和YOLOv8s等检测模型相比,YOLOv8-PG表现出更优的性能。此外,参数数量和计算量的减少有助于降低模型部署成本,并便于在移动机器人平台上实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aef/11047490/d1db47c1f300/animals-14-01226-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索