文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Chili Pepper Object Detection Method Based on Improved YOLOv8n.

作者信息

Ma Na, Wu Yulong, Bo Yifan, Yan Hongwen

机构信息

College of Information Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China.

出版信息

Plants (Basel). 2024 Aug 28;13(17):2402. doi: 10.3390/plants13172402.


DOI:10.3390/plants13172402
PMID:39273886
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11397433/
Abstract

In response to the low accuracy and slow detection speed of chili recognition in natural environments, this study proposes a chili pepper object detection method based on the improved YOLOv8n. Evaluations were conducted among YOLOv5n, YOLOv6n, YOLOv7-tiny, YOLOv8n, YOLOv9, and YOLOv10 to select the optimal model. YOLOv8n was chosen as the baseline and improved as follows: (1) Replacing the YOLOv8 backbone with the improved HGNetV2 model to reduce floating-point operations and computational load during convolution. (2) Integrating the SEAM (spatially enhanced attention module) into the YOLOv8 detection head to enhance feature extraction capability under chili fruit occlusion. (3) Optimizing feature fusion using the dilated reparam block module in certain C2f (CSP bottleneck with two convolutions). (4) Substituting the traditional upsample operator with the CARAFE(content-aware reassembly of features) upsampling operator to further enhance network feature fusion capability and improve detection performance. On a custom-built chili dataset, the F, mAP, and mAP metrics improved by 1.98, 2, and 5.2 percentage points, respectively, over the original model, achieving 96.47%, 96.3%, and 79.4%. The improved model reduced parameter count and GFLOPs by 29.5% and 28.4% respectively, with a final model size of 4.6 MB. Thus, this method effectively enhances chili target detection, providing a technical foundation for intelligent chili harvesting processes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/f497cd870858/plants-13-02402-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/f8ab44be7a37/plants-13-02402-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/57f9bb608852/plants-13-02402-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/fdceab0d09a9/plants-13-02402-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/a43fb2f0acb5/plants-13-02402-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/73edc6ea8b94/plants-13-02402-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/be3b1c131686/plants-13-02402-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/6ed781245da3/plants-13-02402-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/5b997dc0d3e4/plants-13-02402-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/5ce56585b2a0/plants-13-02402-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/16bbea5fa3e2/plants-13-02402-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/7dcb94dea167/plants-13-02402-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/a4b0313301b1/plants-13-02402-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/0996f3799786/plants-13-02402-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/71fbd19a7a7c/plants-13-02402-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/1269b68b0994/plants-13-02402-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/6f9cc0255c3c/plants-13-02402-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/3f6fac83afb5/plants-13-02402-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/50daafe26bdf/plants-13-02402-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/da173f56b7f9/plants-13-02402-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/f497cd870858/plants-13-02402-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/f8ab44be7a37/plants-13-02402-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/57f9bb608852/plants-13-02402-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/fdceab0d09a9/plants-13-02402-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/a43fb2f0acb5/plants-13-02402-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/73edc6ea8b94/plants-13-02402-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/be3b1c131686/plants-13-02402-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/6ed781245da3/plants-13-02402-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/5b997dc0d3e4/plants-13-02402-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/5ce56585b2a0/plants-13-02402-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/16bbea5fa3e2/plants-13-02402-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/7dcb94dea167/plants-13-02402-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/a4b0313301b1/plants-13-02402-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/0996f3799786/plants-13-02402-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/71fbd19a7a7c/plants-13-02402-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/1269b68b0994/plants-13-02402-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/6f9cc0255c3c/plants-13-02402-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/3f6fac83afb5/plants-13-02402-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/50daafe26bdf/plants-13-02402-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/da173f56b7f9/plants-13-02402-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f2/11397433/f497cd870858/plants-13-02402-g020.jpg

相似文献

[1]
Chili Pepper Object Detection Method Based on Improved YOLOv8n.

Plants (Basel). 2024-8-28

[2]
GFI-YOLOv8: Sika Deer Posture Recognition Target Detection Method Based on YOLOv8.

Animals (Basel). 2024-9-11

[3]
Multi-stage tomato fruit recognition method based on improved YOLOv8.

Front Plant Sci. 2024-9-5

[4]
Improved YOLOv8 Model for Lightweight Pigeon Egg Detection.

Animals (Basel). 2024-4-19

[5]
YOLOv8-G: An Improved YOLOv8 Model for Major Disease Detection in Dragon Fruit Stems.

Sensors (Basel). 2024-8-3

[6]
A lightweight Yunnan Xiaomila detection and pose estimation based on improved YOLOv8.

Front Plant Sci. 2024-6-5

[7]
Research on Detection Method of Chaotian Pepper in Complex Field Environments Based on YOLOv8.

Sensors (Basel). 2024-8-30

[8]
YOLOv8-CML: a lightweight target detection method for color-changing melon ripening in intelligent agriculture.

Sci Rep. 2024-6-22

[9]
Research on Improved Algorithms for Cone Bucket Detection in Formula Unmanned Competition.

Sensors (Basel). 2024-9-13

[10]
Improved YOLOv8 for Gas-Flame State Recognition under Low-Pressure Conditions.

Sensors (Basel). 2024-10-2

引用本文的文献

[1]
UAV-Based Automatic Detection of Missing Rice Seedlings Using the PCERT-DETR Model.

Plants (Basel). 2025-7-13

[2]
Sustainable deep vision systems for date fruit quality assessment using attention-enhanced deep learning models.

Front Plant Sci. 2025-6-30

[3]
YOLOv8-CBAM: a study of sheep head identification in Ujumqin sheep.

Front Vet Sci. 2025-2-6

本文引用的文献

[1]
Potential Suitable Habitats of Chili Pepper in China under Climate Change.

Plants (Basel). 2024-4-4

[2]
Identifying the Growth Status of Hydroponic Lettuce Based on YOLO-EfficientNet.

Plants (Basel). 2024-1-26

[3]
Improvement of the YOLOv5 Model in the Optimization of the Brown Spot Disease Recognition Algorithm of Kidney Bean.

Plants (Basel). 2023-11-3

[4]
Tomato Fruit Detection Using Modified Yolov5m Model with Convolutional Neural Networks.

Plants (Basel). 2023-8-26

[5]
Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model.

Plants (Basel). 2023-8-23

[6]
Tomato Maturity Detection and Counting Model Based on MHSA-YOLOv8.

Sensors (Basel). 2023-7-26

[7]
Antioxidant, Anti-Obesity, Nutritional and Other Beneficial Effects of Different Chili Pepper: A Review.

Molecules. 2022-1-28

[8]
Geographical and Ecological Differences in Pepper Cultivation and Consumption in China.

Front Nutr. 2021-10-12

[9]
Machine Learning in Agriculture: A Comprehensive Updated Review.

Sensors (Basel). 2021-5-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索