文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高碳水化合物日粮中添加黄连素通过转录组、胆汁酸合成基因表达和肠道菌群改善罗非鱼的葡萄糖代谢

The Supplementation of Berberine in High-Carbohydrate Diets Improves Glucose Metabolism of Tilapia () via Transcriptome, Bile Acid Synthesis Gene Expression and Intestinal Flora.

作者信息

Liu Hongyu, Wei Menglin, Tan Beiping, Dong Xiaohui, Xie Shiwei

机构信息

Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.

Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China.

出版信息

Animals (Basel). 2024 Apr 20;14(8):1239. doi: 10.3390/ani14081239.


DOI:10.3390/ani14081239
PMID:38672387
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11047455/
Abstract

Berberine is an alkaloid used to treat diabetes. This experiment aimed to investigate the effects of berberine supplementation in high-carbohydrate diets on the growth performance, glucose metabolism, bile acid synthesis, liver transcriptome, and intestinal flora of Nile tilapia. The six dietary groups were the C group with 29% carbohydrate, the H group with 44% carbohydrate, and the HB1-HB4 groups supplemented with 25, 50, 75, and 100 mg/kg of berberine in group H. The results of the 8-week trial showed that compared to group C, the abundance of Bacteroidetes was increased in group HB2 ( < 0.05). The cholesterol-7α-hydroxylase (CYP7A1) and sterol-27-hydroxylase (CYP27A1) activities were decreased and the expression of FXR was increased in group HB4 ( < 0.05). The pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK) activities was decreased in group HB4 ( < 0.05). The liver transcriptome suggests that berberine affects carbohydrate metabolic pathways and primary bile acid synthesis pathways. In summary, berberine affects the glucose metabolism in tilapia by altering the intestinal flora structure, enriching differentially expressed genes (DEGs) in the bile acid pathway to stimulate bile acid production so that it promotes glycolysis and inhibits gluconeogenesis. Therefore, 100 mg/kg of berberine supplementation in high-carbohydrate diets is beneficial to tilapia.

摘要

黄连素是一种用于治疗糖尿病的生物碱。本实验旨在研究在高碳水化合物日粮中添加黄连素对尼罗罗非鱼生长性能、糖代谢、胆汁酸合成、肝脏转录组和肠道菌群的影响。六个日粮组分别为碳水化合物含量为29%的C组、碳水化合物含量为44%的H组以及在H组基础上分别添加25、50、75和100 mg/kg黄连素的HB1 - HB4组。为期8周的试验结果表明,与C组相比,HB2组拟杆菌门丰度增加(P<0.05)。HB4组胆固醇7α - 羟化酶(CYP7A1)和甾醇27 - 羟化酶(CYP27A1)活性降低,法尼酯X受体(FXR)表达增加(P<0.05)。HB4组丙酮酸羧化酶(PC)和磷酸烯醇式丙酮酸羧激酶(PEPCK)活性降低(P<0.05)。肝脏转录组表明,黄连素影响碳水化合物代谢途径和初级胆汁酸合成途径。综上所述,黄连素通过改变肠道菌群结构、富集胆汁酸途径中的差异表达基因(DEGs)以刺激胆汁酸生成,从而促进糖酵解并抑制糖异生,进而影响罗非鱼的糖代谢。因此,在高碳水化合物日粮中添加100 mg/kg黄连素对罗非鱼有益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/a67db5e5c350/animals-14-01239-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/2cd8c27cb7d5/animals-14-01239-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/543b3afe022a/animals-14-01239-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/6f4679b6fece/animals-14-01239-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/dc418902005b/animals-14-01239-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/25cdb74fc607/animals-14-01239-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/8e98684bc2b7/animals-14-01239-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/e3ec96ad7075/animals-14-01239-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/6bb2265ff275/animals-14-01239-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/54c0f3f4066f/animals-14-01239-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/53f676330894/animals-14-01239-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/31efc809cc8b/animals-14-01239-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/56fae29c209f/animals-14-01239-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/19b80a965af1/animals-14-01239-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/a4bf0b628ea5/animals-14-01239-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/b3d16315df71/animals-14-01239-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/41c385f91878/animals-14-01239-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/f8d517a3ab29/animals-14-01239-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/a445456110c3/animals-14-01239-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/2acd1e945b5d/animals-14-01239-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/01f056301b64/animals-14-01239-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/a6adfa4ec7fc/animals-14-01239-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/a78a8e912645/animals-14-01239-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/a67db5e5c350/animals-14-01239-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/2cd8c27cb7d5/animals-14-01239-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/543b3afe022a/animals-14-01239-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/6f4679b6fece/animals-14-01239-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/dc418902005b/animals-14-01239-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/25cdb74fc607/animals-14-01239-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/8e98684bc2b7/animals-14-01239-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/e3ec96ad7075/animals-14-01239-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/6bb2265ff275/animals-14-01239-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/54c0f3f4066f/animals-14-01239-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/53f676330894/animals-14-01239-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/31efc809cc8b/animals-14-01239-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/56fae29c209f/animals-14-01239-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/19b80a965af1/animals-14-01239-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/a4bf0b628ea5/animals-14-01239-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/b3d16315df71/animals-14-01239-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/41c385f91878/animals-14-01239-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/f8d517a3ab29/animals-14-01239-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/a445456110c3/animals-14-01239-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/2acd1e945b5d/animals-14-01239-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/01f056301b64/animals-14-01239-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/a6adfa4ec7fc/animals-14-01239-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/a78a8e912645/animals-14-01239-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e939/11047455/a67db5e5c350/animals-14-01239-g023.jpg

相似文献

[1]
The Supplementation of Berberine in High-Carbohydrate Diets Improves Glucose Metabolism of Tilapia () via Transcriptome, Bile Acid Synthesis Gene Expression and Intestinal Flora.

Animals (Basel). 2024-4-20

[2]
Alleviation of the Adverse Effect of Dietary Carbohydrate by Supplementation of -Inositol to the Diet of Nile Tilapia ().

Animals (Basel). 2020-11-23

[3]
Effects of dietary mannan oligosaccharides (MOS) supplementation on metabolism, inflammatory response and gut microbiota of juvenile Nile tilapia (Oreochromis niloticus) fed with high carbohydrate diet.

Fish Shellfish Immunol. 2022-11

[4]
Dietary berberine can ameliorate glucose metabolism disorder of Megalobrama amblycephala exposed to a high-carbohydrate diet.

Fish Physiol Biochem. 2021-4

[5]
Resveratrol ameliorates intestinal lipid metabolism through the PPAR signaling pathway in high-fat diet-fed red tilapia (Oreochromis niloticus).

Fish Shellfish Immunol. 2024-2

[6]
Alters Bile Acid Composition and Alleviates High-Carbohydrate Diet-Induced Hepatic Lipid Accumulation in Nile Tilapia ().

J Agric Food Chem. 2023-3-29

[7]
Glucose injection into the yolk influences intermediary metabolism in adult Nile tilapia fed with high levels of carbohydrates.

Animal. 2021-9

[8]
The Hypoglycemic Effect of Berberine and Berberrubine Involves Modulation of Intestinal Farnesoid X Receptor Signaling Pathway and Inhibition of Hepatic Gluconeogenesis.

Drug Metab Dispos. 2021-3

[9]
Palmatine regulates bile acid cycle metabolism and maintains intestinal flora balance to maintain stable intestinal barrier.

Life Sci. 2020-9-11

[10]
Early feeding with hyperglucidic diet during fry stage exerts long-term positive effects on nutrient metabolism and growth performance in adult tilapia ().

J Nutr Sci. 2020

引用本文的文献

[1]
Microbiota governs host chenodeoxycholic acid glucuronidation to ameliorate bile acid disorder induced diarrhea.

Microbiome. 2025-2-4

本文引用的文献

[1]
Berberine improves DSS-induced colitis in mice by modulating the fecal-bacteria-related bile acid metabolism.

Biomed Pharmacother. 2023-11

[2]
Effects of on Growth Performance, Intestinal Health, and Disease Resistance of Hybrid Grouper () Fed with Cottonseed Protein Concentrate (CPC) Replacement of Fishmeal.

Aquac Nutr. 2023-6-1

[3]
Uridine alleviates high-carbohydrate diet-induced metabolic syndromes by activating /AMPK signaling pathway and promoting glycogen synthesis in Nile tilapia ().

Anim Nutr. 2023-5-3

[4]
The isolation, identification, whole-genome sequencing of Clostridium butyricum LV1 and its effects on growth performance, immune response, and disease-resistance of Litopenaeus vannamei.

Microbiol Res. 2023-7

[5]
Hypoglycemic mechanisms of polysaccharide in db/db mice via regulation of glycolysis/gluconeogenesis pathway and alteration of gut microbiota.

Heliyon. 2023-4-18

[6]
Bile acids and their receptors in regulation of gut health and diseases.

Prog Lipid Res. 2023-1

[7]
Bile acids and the gut microbiota: metabolic interactions and impacts on disease.

Nat Rev Microbiol. 2023-4

[8]
Gut microbiome and health: mechanistic insights.

Gut. 2022-5

[9]
A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota.

Transl Psychiatry. 2021-5-27

[10]
Intestinal and acetate modify glucose homeostasis via parasympathetic activation in zebrafish.

Gut Microbes. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索