Wiestler Benedikt, Bison Brigitte, Behrens Lars, Tüchert Stefanie, Metz Marie, Griessmair Michael, Jakob Marcus, Schlegel Paul-Gerhardt, Binder Vera, von Luettichau Irene, Metzler Markus, Johann Pascal, Hau Peter, Frühwald Michael
Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany.
TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany.
Cancers (Basel). 2024 Apr 11;16(8):1474. doi: 10.3390/cancers16081474.
Medulloblastoma and pilocytic astrocytoma are the two most common pediatric brain tumors with overlapping imaging features. In this proof-of-concept study, we investigated using a deep learning classifier trained on a multicenter data set to differentiate these tumor types. We developed a patch-based 3D-DenseNet classifier, utilizing automated tumor segmentation. Given the heterogeneity of imaging data (and available sequences), we used all individually available preoperative imaging sequences to make the model robust to varying input. We compared the classifier to diagnostic assessments by five readers with varying experience in pediatric brain tumors. Overall, we included 195 preoperative MRIs from children with medulloblastoma ( = 69) or pilocytic astrocytoma ( = 126) across six university hospitals. In the 64-patient test set, the DenseNet classifier achieved a high AUC of 0.986, correctly predicting 62/64 (97%) diagnoses. It misclassified one case of each tumor type. Human reader accuracy ranged from 100% (expert neuroradiologist) to 80% (resident). The classifier performed significantly better than relatively inexperienced readers ( < 0.05) and was on par with pediatric neuro-oncology experts. Our proof-of-concept study demonstrates a deep learning model based on automated tumor segmentation that can reliably preoperatively differentiate between medulloblastoma and pilocytic astrocytoma, even in heterogeneous data.
髓母细胞瘤和毛细胞型星形细胞瘤是两种最常见的具有重叠影像学特征的儿童脑肿瘤。在这项概念验证研究中,我们使用在多中心数据集上训练的深度学习分类器来区分这些肿瘤类型。我们开发了一种基于图像块的3D密集连接网络分类器,利用自动肿瘤分割技术。鉴于成像数据(以及可用序列)的异质性,我们使用所有单独可用的术前成像序列,以使模型对不同输入具有鲁棒性。我们将该分类器与五位在儿童脑肿瘤方面经验各异的阅片者的诊断评估结果进行了比较。总体而言,我们纳入了来自六所大学医院的195例髓母细胞瘤(n = 69)或毛细胞型星形细胞瘤(n = 126)患儿的术前磁共振成像。在64例患者的测试集中,密集连接网络分类器的曲线下面积(AUC)高达0.986,正确预测了62/64(97%)的诊断结果。它将每种肿瘤类型各误诊了1例。人类阅片者的准确率从100%(神经放射学专家)到80%(住院医师)不等。该分类器的表现明显优于经验相对不足的阅片者(P < 0.05),与儿童神经肿瘤学专家相当。我们的概念验证研究表明,基于自动肿瘤分割的深度学习模型能够在术前可靠地区分髓母细胞瘤和毛细胞型星形细胞瘤,即使在数据异质性的情况下也是如此。