Rudie Jeffrey D, Calabrese Evan, Saluja Rachit, Weiss David, Colby John B, Cha Soonmee, Hess Christopher P, Rauschecker Andreas M, Sugrue Leo P, Villanueva-Meyer Javier E
Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Ave, Suite S-261D, Box 0628, San Francisco, CA 94143 (J.D.R., E.C., D.W., J.B.C., S.C., C.P.H., A.M.R., L.P.S., J.E.V.M.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (R.S.).
Radiol Artif Intell. 2022 Aug 3;4(5):e210243. doi: 10.1148/ryai.210243. eCollection 2022 Sep.
Neural networks were trained for segmentation and longitudinal assessment of posttreatment diffuse glioma. A retrospective cohort (from January 2018 to December 2019) of 298 patients with diffuse glioma (mean age, 52 years ± 14 [SD]; 177 men; 152 patients with glioblastoma, 72 patients with astrocytoma, and 74 patients with oligodendroglioma) who underwent two consecutive multimodal MRI examinations were randomly selected into training ( = 198) and testing ( = 100) samples. A posttreatment tumor segmentation three-dimensional nnU-Net convolutional neural network with multichannel inputs (T1, T2, and T1 postcontrast and fluid-attenuated inversion recovery [FLAIR]) was trained to segment three multiclass tissue types (peritumoral edematous, infiltrated, or treatment-changed tissue [ED]; active tumor or enhancing tissue [AT]; and necrotic core). Separate longitudinal change nnU-Nets were trained on registered and subtracted FLAIR and T1 postlongitudinal images to localize and better quantify and classify changes in ED and AT. Segmentation Dice scores, volume similarities, and 95th percentile Hausdorff distances ranged from 0.72 to 0.89, 0.90 to 0.96, and 2.5 to 3.6 mm, respectively. Accuracy rates of the posttreatment tumor segmentation and longitudinal change networks being able to classify longitudinal changes in ED and AT as increased, decreased, or unchanged were 76%-79% and 90%-91%, respectively. The accuracy levels of the longitudinal change networks were not significantly different from those of three neuroradiologists (accuracy, 90%-92%; κ, 0.58-0.63; > .05). The results of this study support the potential clinical value of artificial intelligence-based automated longitudinal assessment of posttreatment diffuse glioma. MR Imaging, Neuro-Oncology, Neural Networks, CNS, Brain/Brain Stem, Segmentation, Quantification, Convolutional Neural Network (CNN) © RSNA, 2022.
训练神经网络用于治疗后弥漫性胶质瘤的分割和纵向评估。回顾性队列研究(2018年1月至2019年12月)纳入了298例弥漫性胶质瘤患者(平均年龄52岁±14[标准差];177例男性;152例胶质母细胞瘤患者、72例星形细胞瘤患者和74例少突胶质细胞瘤患者),这些患者接受了连续两次多模态MRI检查,并被随机分为训练组(n = 198)和测试组(n = 100)。训练了一个具有多通道输入(T1、T2、T1增强和液体衰减反转恢复[FLAIR])的治疗后肿瘤分割三维nnU-Net卷积神经网络,以分割三种多类组织类型(瘤周水肿、浸润或治疗改变组织[ED];活性肿瘤或强化组织[AT];以及坏死核心)。在配准和相减后的纵向FLAIR和T1图像上训练单独的纵向变化nnU-Net,以定位并更好地量化和分类ED和AT的变化。分割的Dice分数、体积相似性和第95百分位数豪斯多夫距离分别为0.72至0.89、0.90至0.96和2.5至3.6毫米。治疗后肿瘤分割和纵向变化网络将ED和AT的纵向变化分类为增加、减少或不变的准确率分别为76%-79%和90%-91%。纵向变化网络的准确率水平与三位神经放射科医生的准确率水平无显著差异(准确率,90%-92%;κ,0.58-0.63;P >.05)。本研究结果支持基于人工智能的治疗后弥漫性胶质瘤自动纵向评估的潜在临床价值。磁共振成像、神经肿瘤学、神经网络、中枢神经系统、脑/脑干、分割、量化、卷积神经网络(CNN) ©RSNA,2022年