文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用多任务深度学习对胶质瘤进行联合分子亚型、分级和分割。

Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning.

机构信息

Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, the Netherlands.

Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, the Netherlands.

出版信息

Neuro Oncol. 2023 Feb 14;25(2):279-289. doi: 10.1093/neuonc/noac166.


DOI:10.1093/neuonc/noac166
PMID:35788352
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9925710/
Abstract

BACKGROUND: Accurate characterization of glioma is crucial for clinical decision making. A delineation of the tumor is also desirable in the initial decision stages but is time-consuming. Previously, deep learning methods have been developed that can either non-invasively predict the genetic or histological features of glioma, or that can automatically delineate the tumor, but not both tasks at the same time. Here, we present our method that can predict the molecular subtype and grade, while simultaneously providing a delineation of the tumor. METHODS: We developed a single multi-task convolutional neural network that uses the full 3D, structural, preoperative MRI scans to predict the IDH mutation status, the 1p/19q co-deletion status, and the grade of a tumor, while simultaneously segmenting the tumor. We trained our method using a patient cohort containing 1508 glioma patients from 16 institutes. We tested our method on an independent dataset of 240 patients from 13 different institutes. RESULTS: In the independent test set, we achieved an IDH-AUC of 0.90, an 1p/19q co-deletion AUC of 0.85, and a grade AUC of 0.81 (grade II/III/IV). For the tumor delineation, we achieved a mean whole tumor Dice score of 0.84. CONCLUSIONS: We developed a method that non-invasively predicts multiple, clinically relevant features of glioma. Evaluation in an independent dataset shows that the method achieves a high performance and that it generalizes well to the broader clinical population. This first-of-its-kind method opens the door to more generalizable, instead of hyper-specialized, AI methods.

摘要

背景:准确描述胶质瘤对于临床决策至关重要。在初始决策阶段,对肿瘤进行描绘也是可取的,但这很耗时。以前,已经开发出深度学习方法,可以无创地预测胶质瘤的遗传或组织学特征,或者可以自动描绘肿瘤,但不能同时完成这两个任务。在这里,我们提出了一种可以预测分子亚型和分级,同时提供肿瘤描绘的方法。

方法:我们开发了一个单一的多任务卷积神经网络,该网络使用完整的 3D、结构、术前 MRI 扫描来预测 IDH 突变状态、1p/19q 共缺失状态以及肿瘤的分级,同时对肿瘤进行分割。我们使用来自 16 个机构的 1508 名胶质瘤患者的患者队列来训练我们的方法。我们在来自 13 个不同机构的 240 名患者的独立数据集上测试了我们的方法。

结果:在独立测试集中,我们获得了 IDH-AUC 为 0.90、1p/19q 共缺失 AUC 为 0.85 和分级 AUC 为 0.81(分级 II/III/IV)。对于肿瘤描绘,我们获得了整个肿瘤的平均 Dice 分数为 0.84。

结论:我们开发了一种无创预测胶质瘤的多个临床相关特征的方法。在独立数据集上的评估表明,该方法具有较高的性能,并且可以很好地推广到更广泛的临床人群。这种首创的方法为更具通用性而不是超专业化的人工智能方法打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a255/9925710/eb78a18995ed/noac166f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a255/9925710/b7bdb3242a66/noac166f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a255/9925710/a7d2008a950a/noac166f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a255/9925710/5470dc80c9c7/noac166f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a255/9925710/eb78a18995ed/noac166f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a255/9925710/b7bdb3242a66/noac166f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a255/9925710/a7d2008a950a/noac166f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a255/9925710/5470dc80c9c7/noac166f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a255/9925710/eb78a18995ed/noac166f0004.jpg

相似文献

[1]
Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning.

Neuro Oncol. 2023-2-14

[2]
Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma.

Comput Med Imaging Graph. 2021-3

[3]
Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas.

J Neurooncol. 2019-1-19

[4]
RNA editing-based classification of diffuse gliomas: predicting isocitrate dehydrogenase mutation and chromosome 1p/19q codeletion.

BMC Bioinformatics. 2019-12-24

[5]
F-DOPA uptake does not correlate with IDH mutation status and 1p/19q co-deletion in glioma.

Ann Nucl Med. 2019-4

[6]
Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes.

Eur Radiol. 2024-4

[7]
Impact of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2 mutation without the 1p/19q co-deletion.

J Neurooncol. 2016-9

[8]
The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance.

Neurosurg Focus. 2019-12-1

[9]
Predicting the 1p/19q Codeletion Status of Presumed Low-Grade Glioma with an Externally Validated Machine Learning Algorithm.

Clin Cancer Res. 2019-9-23

[10]
Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign.

Eur Radiol. 2019-8-24

引用本文的文献

[1]
UPP1 is a dual biomarker of prognosis and immune microenvironment in IDH wild-type glioblastoma.

Sci Rep. 2025-8-28

[2]
AI-Driven Innovations in Neuroradiology and Neurosurgery: Scoping Review of Current Evidence and Future Directions.

Cancers (Basel). 2025-8-11

[3]
Diagnostic performance of deep learning for predicting glioma isocitrate dehydrogenase and 1p/19q co-deletion in MRI: a systematic review and meta-analysis.

Eur Radiol. 2025-8-16

[4]
Value of artificial intelligence in neuro-oncology.

Lancet Digit Health. 2025-8-8

[5]
Development and Validation of Survival Prediction Models for Patients With Pineoblastomas Using Deep Learning: A SEER-Based Study.

Cancer Rep (Hoboken). 2025-8

[6]
Bridging technology and medicine: artificial intelligence in targeted anticancer drug delivery.

RSC Adv. 2025-8-4

[7]
Deep learning-driven brain tumor classification and segmentation using non-contrast MRI.

Sci Rep. 2025-7-30

[8]
Prediction of 1p/19q state in glioma by integrated deep learning method based on MRI radiomics.

BMC Cancer. 2025-7-28

[9]
Precise identification of medulloblastoma in MRI images using a convolutional neural network integrated with a self-attention mechanism.

Digit Health. 2025-7-23

[10]
Diffuse gliomas: insights into clinical and histopathological features and survival rates from two centers in a middle-income country.

Front Oncol. 2025-7-4

本文引用的文献

[1]
The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.

Neuro Oncol. 2021-8-2

[2]
The Erasmus Glioma Database (EGD): Structural MRI scans, WHO 2016 subtypes, and segmentations of 774 patients with glioma.

Data Brief. 2021-6-2

[3]
Pre-operative Overall Survival Time Prediction for Glioblastoma Patients Using Deep Learning on Both Imaging Phenotype and Genotype.

Med Image Comput Comput Assist Interv. 2019

[4]
Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma.

Comput Med Imaging Graph. 2021-3

[5]
MGMT Promoter Methylation Status Is Not Related to Histological or Radiological Features in IDH Wild-type Glioblastomas.

J Neuropathol Exp Neurol. 2020-8-1

[6]
A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization.

Acad Radiol. 2021-11

[7]
Analyzing the Quality and Challenges of Uncertainty Estimations for Brain Tumor Segmentation.

Front Neurosci. 2020-4-8

[8]
Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI.

Sci Rep. 2020-3-6

[9]
Do we really know who has an methylated glioma? Results of an international survey regarding use of analyses for glioma.

Neurooncol Pract. 2020-1

[10]
Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and Metastatic Brain Tumors.

Front Oncol. 2019-8-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索