Han Xuewei, Bai Ziyi, Mogushi Kaoru, Hase Takeshi, Takeuchi Katsuyuki, Iida Yoritsugu, Sumita Yuka I, Wakabayashi Noriyuki
Department of Advanced Prosthodontics, Graduate School, Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 1138510, Japan.
Institute of Education, Tokyo Medical and Dental University, Tokyo 1138510, Japan.
J Clin Med. 2024 Apr 18;13(8):2363. doi: 10.3390/jcm13082363.
This investigation sought to cross validate the predictors of tongue pressure recovery in elderly patients' post-treatment for head and neck tumors, leveraging advanced machine learning techniques. By employing logistic regression, support vector regression, random forest, and extreme gradient boosting, the study analyzed an array of variables including patient demographics, surgery types, dental health status, and age, drawn from comprehensive medical records and direct tongue pressure assessments. Among the models, logistic regression emerged as the most effective, demonstrating an accuracy of 0.630 [95% confidence interval (CI): 0.370-0.778], F1 score of 0.688 [95% confidence interval (CI): 0.435-0.853], precision of 0.611 [95% confidence interval (CI): 0.313-0.801], recall of 0.786 [95% confidence interval (CI): 0.413-0.938] and an area under the receiver operating characteristic curve of 0.626 [95% confidence interval (CI): 0.409-0.806]. This model distinctly highlighted the significance of glossectomy ( = 0.039), the presence of functional teeth ( = 0.043), and the patient's age ( = 0.044) as pivotal factors influencing tongue pressure, setting the threshold for statistical significance at < 0.05. The analysis underscored the critical role of glossectomy, the presence of functional natural teeth, and age as determinants of tongue pressure in logistics regression, with the presence of natural teeth and the tumor site located in the tongue consistently emerging as the key predictors across all computational models employed in this study.
本研究旨在利用先进的机器学习技术,对老年头颈部肿瘤患者治疗后舌压恢复的预测指标进行交叉验证。通过逻辑回归、支持向量回归、随机森林和极端梯度提升等方法,该研究分析了一系列变量,包括患者人口统计学特征、手术类型、牙齿健康状况和年龄,这些数据来自综合医疗记录和直接舌压评估。在这些模型中,逻辑回归表现最为有效,准确率为0.630[95%置信区间(CI):0.370 - 0.778],F1分数为0.688[95%置信区间(CI):0.435 - 0.853],精确率为0.611[95%置信区间(CI):0.313 - 0.801],召回率为0.786[95%置信区间(CI):0.413 - 0.938],受试者工作特征曲线下面积为0.626[95%置信区间(CI):0.409 - 0.806]。该模型明确强调了舌切除术(P = 0.039)、功能性牙齿的存在(P = 0.043)和患者年龄(P = 0.044)作为影响舌压的关键因素,将统计学显著性阈值设定为P < 0.05。分析强调了舌切除术、功能性天然牙的存在和年龄在逻辑回归中作为舌压决定因素的关键作用,天然牙的存在和肿瘤位于舌部在本研究采用的所有计算模型中始终是关键预测因素。