Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, PO Box 610041, Chengdu, China.
The Research Units of West China (2018RU012) Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China.
BMC Anesthesiol. 2022 Sep 10;22(1):284. doi: 10.1186/s12871-022-01827-x.
Postoperative major adverse cardiovascular events (MACEs) account for more than one-third of perioperative deaths. Geriatric patients are more vulnerable to postoperative MACEs than younger patients. Identifying high-risk patients in advance can help with clinical decision making and improve prognosis. This study aimed to develop a machine learning model for the preoperative prediction of postoperative MACEs in geriatric patients.
We collected patients' clinical data and laboratory tests prospectively. All patients over 65 years who underwent surgeries in West China Hospital of Sichuan University from June 25, 2019 to June 29, 2020 were included. Models based on extreme gradient boosting (XGB), gradient boosting machine, random forest, support vector machine, and Elastic Net logistic regression were trained. The models' performance was compared according to area under the precision-recall curve (AUPRC), area under the receiver operating characteristic curve (AUROC) and Brier score. To minimize the influence of clinical intervention, we trained the model based on undersampling set. Variables with little contribution were excluded to simplify the model for ensuring the ease of use in clinical settings.
We enrolled 5705 geriatric patients into the final dataset. Of those patients, 171 (3.0%) developed postoperative MACEs within 30 days after surgery. The XGB model outperformed other machine learning models with AUPRC of 0.404(95% confidence interval [CI]: 0.219-0.589), AUROC of 0.870(95%CI: 0.786-0.938) and Brier score of 0.024(95% CI: 0.016-0.032). Model trained on undersampling set showed improved performance with AUPRC of 0.511(95% CI: 0.344-0.667, p < 0.001), AUROC of 0.912(95% CI: 0.847-0.962, p < 0.001) and Brier score of 0.020 (95% CI: 0.013-0.028, p < 0.001). After removing variables with little contribution, the undersampling model showed comparable predictive accuracy with AUPRC of 0.507(95% CI: 0.338-0.669, p = 0.36), AUROC of 0.896(95%CI: 0.826-0.953, p < 0.001) and Brier score of 0.020(95% CI: 0.013-0.028, p = 0.20).
In this prospective study, we developed machine learning models for preoperative prediction of postoperative MACEs in geriatric patients. The XGB model showed the best performance. Undersampling method achieved further improvement of model performance.
The protocol of this study was registered at www.chictr.org.cn (15/08/2019, ChiCTR1900025160).
术后主要不良心血管事件(MACE)占围手术期死亡人数的三分之一以上。老年患者比年轻患者更容易发生术后 MACE。提前识别高危患者有助于临床决策并改善预后。本研究旨在建立一种机器学习模型,用于预测老年患者术后 MACE。
前瞻性收集患者的临床数据和实验室检查。纳入 2019 年 6 月 25 日至 2020 年 6 月 29 日期间在四川大学华西医院接受手术的所有 65 岁以上患者。基于极端梯度提升(XGB)、梯度提升机、随机森林、支持向量机和弹性网络逻辑回归的模型进行训练。根据精确召回曲线下面积(AUPRC)、接收者操作特征曲线下面积(AUROC)和 Brier 评分比较模型性能。为了最小化临床干预的影响,我们基于欠采样集训练模型。排除贡献较小的变量以简化模型,以确保在临床环境中易于使用。
我们最终纳入了 5705 名老年患者的数据集。其中 171 例(3.0%)在术后 30 天内发生术后 MACE。XGB 模型的表现优于其他机器学习模型,AUPRC 为 0.404(95%CI:0.219-0.589),AUROC 为 0.870(95%CI:0.786-0.938),Brier 评分为 0.024(95%CI:0.016-0.032)。基于欠采样集训练的模型表现得到改善,AUPRC 为 0.511(95%CI:0.344-0.667,p<0.001),AUROC 为 0.912(95%CI:0.847-0.962,p<0.001),Brier 评分为 0.020(95%CI:0.013-0.028,p<0.001)。在去除贡献较小的变量后,欠采样模型的预测准确性相当,AUPRC 为 0.507(95%CI:0.338-0.669,p=0.36),AUROC 为 0.896(95%CI:0.826-0.953,p<0.001),Brier 评分为 0.020(95%CI:0.013-0.028,p=0.20)。
在这项前瞻性研究中,我们开发了用于预测老年患者术后 MACE 的机器学习模型。XGB 模型表现最佳。欠采样方法进一步提高了模型性能。
本研究方案在中国临床试验注册中心注册(15/08/2019,ChiCTR1900025160)。