Suppr超能文献

考虑预后效果的因果规则集成方法估计异质治疗效果。

Causal rule ensemble method for estimating heterogeneous treatment effect with consideration of prognostic effects.

机构信息

Clinical Study Support Center, Wakayama Medical University Hospital, Wakayama, Japan.

Graduate School of Culture and Information Science, Doshisha University, Kyoto, Japan.

出版信息

Stat Methods Med Res. 2024 Jun;33(6):1021-1042. doi: 10.1177/09622802241247728. Epub 2024 Apr 27.

Abstract

We propose a novel framework based on the RuleFit method to estimate heterogeneous treatment effect in randomized clinical trials. The proposed method estimates a rule ensemble comprising a set of prognostic rules, a set of prescriptive rules, as well as the linear effects of the original predictor variables. The prescriptive rules provide an interpretable description of the heterogeneous treatment effect. By including a prognostic term in the proposed model, the selected rule is represented as an heterogeneous treatment effect that excludes other effects. We confirmed that the performance of the proposed method was equivalent to that of other ensemble learning methods through numerical simulations and demonstrated the interpretation of the proposed method using a real data application.

摘要

我们提出了一个基于 RuleFit 方法的新框架,用于估计随机临床试验中的异质治疗效果。该方法估计了一个规则集,包括一组预测规则、一组规定性规则以及原始预测变量的线性效应。规定性规则提供了异质治疗效果的可解释描述。通过在提出的模型中包含预测项,所选规则表示为排除其他效果的异质治疗效果。我们通过数值模拟确认了所提出方法的性能等效于其他集成学习方法,并通过实际数据应用演示了所提出方法的解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验