School of EECS and SciLifeLab, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden.
Department of Oncology and Pathology, Karolinska Institutet, Solna, 171 77, Sweden.
Bioinformatics. 2024 May 2;40(5). doi: 10.1093/bioinformatics/btae284.
Copy number variations (CNVs) are common genetic alterations in tumour cells. The delineation of CNVs holds promise for enhancing our comprehension of cancer progression. Moreover, accurate inference of CNVs from single-cell sequencing data is essential for unravelling intratumoral heterogeneity. However, existing inference methods face limitations in resolution and sensitivity.
To address these challenges, we present CopyVAE, a deep learning framework based on a variational autoencoder architecture. Through experiments, we demonstrated that CopyVAE can accurately and reliably detect CNVs from data obtained using single-cell RNA sequencing. CopyVAE surpasses existing methods in terms of sensitivity and specificity. We also discussed CopyVAE's potential to advance our understanding of genetic alterations and their impact on disease advancement.
CopyVAE is implemented and freely available under MIT license at https://github.com/kurtsemih/copyVAE.
拷贝数变异(CNVs)是肿瘤细胞中常见的遗传改变。对 CNVs 的描绘有望增强我们对癌症进展的理解。此外,从单细胞测序数据中准确推断 CNVs 对于揭示肿瘤内异质性至关重要。然而,现有的推断方法在分辨率和灵敏度方面存在局限性。
为了解决这些挑战,我们提出了 CopyVAE,这是一种基于变分自动编码器架构的深度学习框架。通过实验,我们证明了 CopyVAE 可以从单细胞 RNA 测序获得的数据中准确可靠地检测 CNVs。在灵敏度和特异性方面,CopyVAE 优于现有方法。我们还讨论了 CopyVAE 推进我们对遗传改变及其对疾病进展影响的理解的潜力。
CopyVAE 是在 MIT 许可证下实现的,并在 https://github.com/kurtsemih/copyVAE 上免费提供。