Suppr超能文献

基于改进深度变分自动编码器的单细胞 RNA-seq 数据降维和可视化。

Dimensionality reduction and visualization of single-cell RNA-seq data with an improved deep variational autoencoder.

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.

Zhangjiajie People's Hospital, Zhangjiajie, China.

出版信息

Brief Bioinform. 2023 May 19;24(3). doi: 10.1093/bib/bbad152.

Abstract

Single-cell RNA sequencing (scRNA-seq) is a revolutionary breakthrough that determines the precise gene expressions on individual cells and deciphers cell heterogeneity and subpopulations. However, scRNA-seq data are much noisier than traditional high-throughput RNA-seq data because of technical limitations, leading to many scRNA-seq data studies about dimensionality reduction and visualization remaining at the basic data-stacking stage. In this study, we propose an improved variational autoencoder model (termed DREAM) for dimensionality reduction and a visual analysis of scRNA-seq data. Here, DREAM combines the variational autoencoder and Gaussian mixture model for cell type identification, meanwhile explicitly solving 'dropout' events by introducing the zero-inflated layer to obtain the low-dimensional representation that describes the changes in the original scRNA-seq dataset. Benchmarking comparisons across nine scRNA-seq datasets show that DREAM outperforms four state-of-the-art methods on average. Moreover, we prove that DREAM can accurately capture the expression dynamics of human preimplantation embryonic development. DREAM is implemented in Python, freely available via the GitHub website, https://github.com/Crystal-JJ/DREAM.

摘要

单细胞 RNA 测序(scRNA-seq)是一项革命性的突破,它可以确定单个细胞中精确的基因表达情况,并揭示细胞异质性和亚群。然而,由于技术限制,scRNA-seq 数据比传统的高通量 RNA-seq 数据嘈杂得多,这导致许多关于 scRNA-seq 数据降维和可视化的研究仍停留在基本的数据堆叠阶段。在这项研究中,我们提出了一种改进的变分自动编码器模型(称为 DREAM),用于 scRNA-seq 数据的降维和可视化分析。在这里,DREAM 将变分自动编码器和高斯混合模型结合起来进行细胞类型识别,同时通过引入零膨胀层来显式解决“缺失”事件,从而获得描述原始 scRNA-seq 数据集变化的低维表示。在九个 scRNA-seq 数据集上的基准比较表明,DREAM 在平均水平上优于四种最先进的方法。此外,我们证明了 DREAM 可以准确地捕获人类胚胎发育的表达动态。DREAM 是用 Python 编写的,可以通过 GitHub 网站免费获得,网址是 https://github.com/Crystal-JJ/DREAM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验