Li Tianyi, Yang Qiao, Acs Balazs, Sifakis Emmanouil G, Toosi Hosein, Engblom Camilla, Thrane Kim, Lin Qirong, Mold Jeff E, Sun Wenwen, Boyaci Ceren, Steen Sanna, Frisén Jonas, Lagergren Jens, Lundeberg Joakim, Chen Xinsong, Hartman Johan
Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.
NPJ Precis Oncol. 2025 Sep 9;9(1):310. doi: 10.1038/s41698-025-01104-3.
Breast cancer is a highly heterogeneous disease with diverse outcomes, and intra-tumoral heterogeneity plays a significant role in both diagnosis and treatment. Despite its importance, the spatial distribution of intra-tumoral heterogeneity is not fully elucidated. Spatial transcriptomics has emerged as a promising tool to study the molecular mechanisms behind many diseases. It offers accurate measurements of RNA abundance, providing powerful tools to correlate the morphologies of cellular neighborhoods with localized gene expression patterns. However, the spot-based spatial transcriptomic tools, including the most widely used platform, Visium, do not achieve single-cell resolution readouts, which hinders data interpretability. In this study, we present a computational pathology image analysis pipeline (i.e., computational tissue annotation, CTA) that utilizes machine learning algorithms to accurately map tumor, stroma, and immune compartments within Visium-assayed tumor sections. Using a cohort of 23 breast tumor sections from four patients, we demonstrate that CTA can provide high-resolution annotations on the hematoxylin-and-eosin-stained images alongside the paired sequencing data, support the evaluation of deconvolution methods, deepen insights into intra-tumoral heterogeneity by increasing data analysis resolution, assist with spatially resolved intrinsic subtyping, and enhance the visualization of lymphocyte clones at single-cell resolution. The proposed pipeline provides valuable insights into the complex spatial architecture of breast cancer, contributing to more personalized diagnostics and treatment strategies.
乳腺癌是一种具有多种预后的高度异质性疾病,肿瘤内异质性在诊断和治疗中都起着重要作用。尽管其很重要,但肿瘤内异质性的空间分布尚未完全阐明。空间转录组学已成为研究许多疾病背后分子机制的一种有前景的工具。它能对RNA丰度进行精确测量,为将细胞邻域形态与局部基因表达模式相关联提供了强大工具。然而,基于斑点的空间转录组学工具,包括使用最广泛的平台Visium,无法实现单细胞分辨率读数,这阻碍了数据的可解释性。在本研究中,我们提出了一种计算病理学图像分析流程(即计算组织注释,CTA),该流程利用机器学习算法在Visium分析的肿瘤切片内准确绘制肿瘤、基质和免疫区域。通过对来自4名患者的23个乳腺肿瘤切片进行分析,我们证明CTA能够在苏木精-伊红染色图像以及配对测序数据的基础上提供高分辨率注释,支持对反卷积方法的评估,通过提高数据分析分辨率加深对肿瘤内异质性的理解,协助进行空间分辨的内在亚型分类,并以单细胞分辨率增强淋巴细胞克隆的可视化。所提出的流程为乳腺癌复杂的空间结构提供了有价值的见解,有助于制定更个性化的诊断和治疗策略。