文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Stratification and prognostic evaluation of breast cancer subtypes defined by obesity-associated genes.

作者信息

Chen Dongjuan, Xie Zilu, Yang Jun, Zhang Ting, Xiong Qiliang, Yi Chen, Jiang Shaofeng

机构信息

Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.

Department of Biomedical Engineering, Nanchang Hang Kong University, Jiangxi, 330063, China.

出版信息

Discov Oncol. 2024 Apr 27;15(1):133. doi: 10.1007/s12672-024-00988-0.


DOI:10.1007/s12672-024-00988-0
PMID:38676834
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11055831/
Abstract

OBJECTIVE: Breast cancer was the most common type of cancer among women worldwide, significantly impacting their quality of life and survival rates. And obesity has been widely accepted as an important risk factor for breast cancer. However, the specific mechanisms by which obesity affects breast cancer were still unclear. Therefore, studying the impact mechanisms of obesity as a risk factor for breast cancer was of utmost importance. METHODS: This study was based on TCGA breast cancer RNA transcriptomic data and the GeneCard obesity gene set. Through single and multiple factor Cox analysis and LASSO coefficient screening, seven hub genes were identified. The independent mechanisms of these seven hub genes were evaluated from various aspects, including survival data, genetic mutation data, single-cell sequencing data, and immune cell data. Additionally, the risk prognosis model and the neural network diagnostic model were established to further investigate these seven hub genes. In order to achieve precision treatment for breast cancer (BRCA), based on the RNA transcriptomic data of the seven genes, 1226 BRCA patients were divided into two subtypes: BRCA subtype 1 and BRCA subtype 2. By studying and comparing the immune microenvironment, investigating the mechanisms of differential gene expression, and exploring the mechanisms of subnetworks, we aim to explore the clinical differences in the presentation of BRCA subtypes and achieve precision treatment for BRCA. Finally, qRT-PCR experiments were conducted to validate the conclusions of the bioinformatics analysis. RESULTS: The 7 hub genes showed good diagnostic independence and can serve as excellent biomarkers for molecular diagnosis. However, they do not perform well as independent prognostic molecular markers for BRCA patients. When predicting the survival of BRCA patients, their AUC values at 1 year, 3 years, and 5 years are mostly below 0.5. Nevertheless, through the establishment of the risk prognosis model considering the combined effect of the seven hub genes, it was found that the survival prediction of BRCA patients can be significantly improved. The risk prognosis model, compared to the independent use of the seven hub genes as prognostic markers, achieved higher timeROC AUC values at 1 year, 3 years, and 5 years, with values of 0.651, 0.669, and 0.641 respectively. Additionally, the neural network diagnostic model constructed from the 7 genes performs well in diagnosing BRCA, with an AUC value of 0.94, accurately identifying BRCA patients. The two subtypes identified by the seven hub genes exhibited significant differences in survival period, with subtype 1 having a poor prognosis. The differential mechanisms between the two subtypes mainly originate from regulatory differences in the immune microenvironment. Finally, the results of this study's bioinformatics analysis were validated through qRT-PCR experiments. CONCLUSION: 7 hub genes serve as excellent independent biomarkers for molecular diagnosis, and the neural network diagnostic model can accurately distinguish BRCA patients. In addition, based on the expression levels of these seven genes in BRCA patients, two subtypes can be reliably identified: BRCA subtype 1 and BRCA subtype 2, and these two subtypes showed significant differences in BRCA patient survival prognosis, proportion of immune cells, and expression levels of immune cells. Among them, patients with subtype 1 of BRCA had a poor prognosis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/9285673b45ee/12672_2024_988_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/66540549e331/12672_2024_988_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/100f895a4b90/12672_2024_988_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/2c648b46e70a/12672_2024_988_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/779bf9beb323/12672_2024_988_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/c49f47ed08d9/12672_2024_988_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/11418719efff/12672_2024_988_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/666db530556e/12672_2024_988_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/b7ce1843581d/12672_2024_988_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/86ea2123a599/12672_2024_988_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/478f49d098f0/12672_2024_988_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/c1021afbd556/12672_2024_988_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/6ab303838664/12672_2024_988_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/bd394cf1b2b2/12672_2024_988_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/560838572df4/12672_2024_988_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/f587beb9a5fe/12672_2024_988_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/40df7c262a4f/12672_2024_988_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/c3d0c9e3912c/12672_2024_988_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/26a1fc2d8e76/12672_2024_988_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/0f5e70ff97ba/12672_2024_988_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/2efab7e381bf/12672_2024_988_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/ea56b8a382bd/12672_2024_988_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/9285673b45ee/12672_2024_988_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/66540549e331/12672_2024_988_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/100f895a4b90/12672_2024_988_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/2c648b46e70a/12672_2024_988_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/779bf9beb323/12672_2024_988_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/c49f47ed08d9/12672_2024_988_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/11418719efff/12672_2024_988_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/666db530556e/12672_2024_988_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/b7ce1843581d/12672_2024_988_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/86ea2123a599/12672_2024_988_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/478f49d098f0/12672_2024_988_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/c1021afbd556/12672_2024_988_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/6ab303838664/12672_2024_988_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/bd394cf1b2b2/12672_2024_988_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/560838572df4/12672_2024_988_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/f587beb9a5fe/12672_2024_988_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/40df7c262a4f/12672_2024_988_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/c3d0c9e3912c/12672_2024_988_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/26a1fc2d8e76/12672_2024_988_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/0f5e70ff97ba/12672_2024_988_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/2efab7e381bf/12672_2024_988_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/ea56b8a382bd/12672_2024_988_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11055831/9285673b45ee/12672_2024_988_Fig22_HTML.jpg

相似文献

[1]
Stratification and prognostic evaluation of breast cancer subtypes defined by obesity-associated genes.

Discov Oncol. 2024-4-27

[2]
Integrating Bioinformatics and Drug Sensitivity Analyses to Identify Molecular Characteristics Associated with Targeting Necroptosis in Breast Cancer and their Clinical Prognostic Significance.

Recent Pat Anticancer Drug Discov. 2024

[3]
Identification of Breast Cancer Subtypes Based on Endoplasmic Reticulum Stress-Related Genes and Analysis of Prognosis and Immune Microenvironment in Breast Cancer Patients.

Technol Cancer Res Treat. 2024

[4]
Identification of Hypoxia-Related Subtypes, Establishment of Prognostic Models, and Characteristics of Tumor Microenvironment Infiltration in Colon Cancer.

Front Genet. 2022-6-17

[5]
Homologous repair deficiency-associated genes in invasive breast cancer revealed by WGCNA co-expression network analysis and genetic perturbation similarity analysis.

Cell Cycle. 2023-5

[6]
A new 4-gene-based prognostic model accurately predicts breast cancer prognosis and immunotherapy response by integrating WGCNA and bioinformatics analysis.

Front Immunol. 2024

[7]
Identification of prognostic biomarkers of breast cancer based on the immune-related gene module.

Autoimmunity. 2023-12

[8]
Epithelial cell-related prognostic risk model in breast cancer based on single-cell and bulk RNA sequencing.

Heliyon. 2024-8-28

[9]
Polo-like kinase 1 as a biomarker predicts the prognosis and immunotherapy of breast invasive carcinoma patients.

Oncol Res. 2023

[10]
Analysis of C-X-C motif chemokine receptors in breast cancer: potential value in immunotherapy and prognostic prediction.

Ann Transl Med. 2022-12

引用本文的文献

[1]
Systematic screening of metabolic pathways to identify two breast cancer subtypes with divergent immune characteristics.

Sci Rep. 2025-7-1

本文引用的文献

[1]
Obesity-associated changes in molecular biology of primary breast cancer.

Nat Commun. 2023-7-21

[2]
Multi-Stage Attentive Network for Motion Deblurring via Binary Cross-Entropy Loss.

Entropy (Basel). 2022-10-3

[3]
The Challenges of Treating Patients with Breast Cancer and Obesity.

Cancers (Basel). 2023-4-28

[4]
Sex steroid hormones and risk of breast cancer: a two-sample Mendelian randomization study.

Breast Cancer Res. 2022-10-8

[5]
Risk factors for breast cancer in women: an update review.

Med Oncol. 2022-9-7

[6]
CCL5 mediates breast cancer metastasis and prognosis through CCR5/Treg cells.

Front Oncol. 2022-8-10

[7]
The role of obesity and bariatric surgery-induced weight loss in breast cancer.

Cancer Metastasis Rev. 2022-9

[8]
The obesity-breast cancer link: a multidisciplinary perspective.

Cancer Metastasis Rev. 2022-9

[9]
Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures.

Biomed Res Int. 2022

[10]
Breast cancer microenvironment and obesity: challenges for therapy.

Cancer Metastasis Rev. 2022-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索