Institut D'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR CNRS 8520, Univ. Lille Avenue Poincaré, BP 60069, Villeneuve D'Ascq, Cedex, 59652, France.
Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany.
Biosens Bioelectron. 2024 Aug 1;257:116311. doi: 10.1016/j.bios.2024.116311. Epub 2024 Apr 24.
One of the serious challenges facing modern point-of-care (PoC) molecular diagnostic platforms relate to reliable detection of low concentration biomarkers such as nucleic acids or proteins in biological samples. Non-specific analyte-receptor interactions due to competitive binding in the presence of abundant molecules, inefficient mass transport and very low number of analyte molecules in sample volume, in general pose critical hurdles for successful implementation of such PoC platforms for clinical use. Focusing on these specific challenges, this work reports a unique PoC biosensor that combines the advantages of nanoscale biologically-sensitive field-effect transistor arrays (BioFET-arrays) realized in a wafer-scale top-down nanofabrication as high sensitivity electrical transducers with that of sophisticated molecular programs (MPs) customized for selective recognition of analyte miRNAs and amplification resulting in an overall augmentation of signal transduction strategy. The MPs realize a programmable universal molecular amplifier (PUMA) in fluidic matrix on chip and provide a biomarker-triggered exponential release of small nucleic acid sequences easily detected by receptor-modified BioFETs. A common miRNA biomarker LET7a was selected for successful demonstration of this novel biosensor, achieving limit of detection (LoD) down to 10 fM and wide dynamic ranges (10 pM-10 nM) in complex physiological solutions. As the determination of biomarker concentration is implemented by following the electrical signal related to analyte-triggered PUMA in time-domain instead of measuring the threshold shifts of BioFETs, and circumvents direct hybridization of biomarkers at transducer surface, this new strategy also allows for multiple usage (>3 times) of the biosensor platform suggesting exceptional cost-effectiveness for practical use.
面向即时护理(POC)分子诊断平台的一个严峻挑战,涉及到如何可靠地检测生物样本中低浓度生物标志物,如核酸或蛋白质。由于大量分子存在时的竞争结合,非特异性分析物-受体相互作用、质量传输效率低下,以及样本体积中分析物分子数量非常少,这些通常对成功实施此类 POCT 平台用于临床带来了关键障碍。针对这些特定挑战,本工作报告了一种独特的 POCT 生物传感器,它结合了在晶圆级自上而下纳米制造中实现的纳米级生物敏感场效应晶体管阵列(BioFET-arrays)的优势,作为高灵敏度电传感器,以及用于选择性识别分析物 miRNA 和放大的复杂分子程序(MPs)的优势,从而整体增强信号转导策略。MPs 在芯片上的流体基质中实现可编程通用分子放大器(PUMA),并提供生物标志物触发的小核酸序列的指数释放,这些序列很容易被受体修饰的 BioFET 检测到。选择常见的 miRNA 生物标志物 LET7a 来成功演示这种新型生物传感器,在复杂生理溶液中实现了低至 10 fM 的检测限(LoD)和宽动态范围(10 pM-10 nM)。由于通过在时域中跟踪与分析物触发的 PUMA 相关的电信号来实现生物标志物浓度的测定,而不是测量 BioFET 的阈值偏移,并且规避了生物标志物在换能器表面的直接杂交,因此这种新策略还允许生物传感器平台多次(>3 次)使用,这表明其具有出色的性价比,非常适合实际应用。