You Mu, Xu Mai, Hu Yunhu, Xue Shuwen, Zhao Jing
School of Biology Engineering, Huainan Normal University, Huainan 232001, China.
School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232001, China.
ACS Omega. 2024 Apr 9;9(16):18480-18487. doi: 10.1021/acsomega.4c00618. eCollection 2024 Apr 23.
Biomass combustion for power generation stands as a pivotal method in energy utilization, offering a promising approach for renewable energy utilization. However, the substantial volume of slag produced by biomass burning plants poses environmental challenges, impeding sustainable energy practices. This article systematically studies the characteristics of ash generated from typical biomass direct combustion power plant ash and analyzes the chemical composition, trace element content characteristics, leaching characteristics, and chemical forms of biomass bottom ash. Furthermore, it assesses the environmental ecology and bioavailability of trace elements in bottom ash using the ecological risk assessment method and RAC method. The results demonstrate that the biomass bottom ash contains plant nutrients, such as K, Ca, Mg, and P, while the content of harmful trace elements is lower than the relevant Chinese standards. In dissolution experiments, the leaching rate of nearly all elements remains exceptionally low, primarily due to the distribution of trace elements within the lattice structure of stable minerals. Trace elements predominantly exist in the residual phase, Cu and Zn primarily found in organic compounds and sulfide bound states, while other elements mostly exist in the form of iron manganese oxide bound states. Ecological risk assessment indicates a significant risk level for Cd, contrasting with the slight risk associated with other elements. RAC results indicated no ecological risk of all of the trace elements. Consequently, the utilization of bottom ash in agricultural and forestry soils is deemed to be viable. These findings serve as a crucial foundation for biomass bottom ash resource utilization and underpin the sustainable utilization of biomass energy.
生物质燃烧发电是能源利用的关键方法,为可再生能源利用提供了一种有前景的途径。然而,生物质燃烧发电厂产生的大量炉渣带来了环境挑战,阻碍了可持续能源实践。本文系统研究了典型生物质直接燃烧发电厂灰渣的特性,分析了生物质底灰的化学成分、微量元素含量特征、浸出特性和化学形态。此外,采用生态风险评估方法和RAC方法评估了底灰中微量元素的环境生态和生物有效性。结果表明,生物质底灰含有植物养分,如钾、钙、镁和磷,而有害微量元素的含量低于中国相关标准。在溶解实验中,几乎所有元素的浸出率都极低,主要是由于微量元素在稳定矿物晶格结构中的分布。微量元素主要存在于残渣相中,铜和锌主要存在于有机化合物和硫化物结合态中,而其他元素大多以铁锰氧化物结合态存在。生态风险评估表明镉存在显著风险水平,与其他元素的轻微风险形成对比。RAC结果表明所有微量元素均无生态风险。因此,底灰在农林土壤中的利用被认为是可行的。这些发现为生物质底灰资源利用提供了关键基础,并支持生物质能源的可持续利用。