Suppr超能文献

通过应力优化实现高效稳定的质子交换膜水电解

Efficient and Stable Proton Exchange Membrane Water Electrolysis Enabled by Stress Optimization.

作者信息

Liu Jiawei, Liu Han, Yang Yang, Tao Yongbing, Zhao Lanjun, Li Shuirong, Fang Xiaoliang, Lin Zhiwei, Wang Huakun, Tao Hua Bing, Zheng Nanfeng

机构信息

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.

Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, People's Republic of China.

出版信息

ACS Cent Sci. 2024 Mar 21;10(4):852-859. doi: 10.1021/acscentsci.4c00037. eCollection 2024 Apr 24.

Abstract

Proton exchange membrane water electrolysis (PEMWE) is a promising solution for the conversion and storage of fluctuating renewable energy sources. Although tremendously efficient materials have been developed, commercial PEMWE products still cannot fulfill industrial demands regarding efficiency and stability. In this work, we demonstrate that the stress distribution, a purely mechanical parameter in electrolyzer assembly, plays a critical role in overall efficiency and stability. The conventional cell structure, which usually adopts a serpentine flow channel (S-FC) to deliver and distribute reactants and products, resulted in highly uneven stress distribution. Consequently, the anode catalyst layer (ACL) under the high stress region was severely deformed, whereas the low stress region was not as active due to poor electrical contact. To address these issues, we proposed a Ti mesh flow channel (TM-FC) with gradient pores to reduce the stress inhomogeneity. Consequently, the ACL with TM-FC exhibited 27 mV lower voltage initially and an 8-fold reduction in voltage degradation rate compared to that with S-FC at 2.0 A/cm. Additionally, the applicability of the TM-FC was demonstrated in cross-scale electrolyzers up to 100 kW, showing a voltage increase of only 20 mV (accounting for less than 2% of overall voltage) after three orders of magnitude scaleup.

摘要

质子交换膜水电解(PEMWE)是一种很有前景的解决方案,用于波动可再生能源的转换和存储。尽管已经开发出了高效的材料,但商用PEMWE产品在效率和稳定性方面仍无法满足工业需求。在这项工作中,我们证明了应力分布,这一电解槽组件中的纯机械参数,在整体效率和稳定性中起着关键作用。传统的电池结构通常采用蛇形流道(S-FC)来输送和分配反应物及产物,导致应力分布极不均匀。因此,高应力区域下的阳极催化剂层(ACL)严重变形,而低应力区域由于电接触不良而活性较低。为了解决这些问题,我们提出了一种具有梯度孔隙的钛网流道(TM-FC),以降低应力不均匀性。因此,与采用S-FC的情况相比,采用TM-FC的ACL在初始时电压低27 mV,在2.0 A/cm²时电压降解率降低了8倍。此外,TM-FC在高达100 kW的跨尺度电解槽中的适用性得到了证明,在放大三个数量级后,电压仅增加20 mV(占总电压的不到2%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be6a/11049778/7de779cedbff/oc4c00037_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验