Suppr超能文献

儿茶素通过 GA 生物合成促进黄连木种子的萌发。

Catechin promotes the germination of Pistacia chinensis seeds via GA biosynthesis.

机构信息

Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China.

State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing 100083, China.

出版信息

Ann Bot. 2024 Jul 9;134(2):233-246. doi: 10.1093/aob/mcae061.

Abstract

BACKGROUND AND AIMS

Chinese pistachio (Pistacia chinensis), an important horticultural plant species, holds great ornamental value with beautiful leaves and fruits. Seedling propagation of this tree species is restricted by its erratic seed germination; however, the germination mechanism is ambiguous. The aim of this study was to determine the germination mechanism from a novel perspective based on the multi-omics data.

METHODS

The multi-omics technique combined with hormone content measurement was applied to seed germination of Chinese pistachio.

KEY RESULTS

Due to its great accumulation during seed germination, catechin stood out from the identified metabolites in a broadly targeted metabolomic analysis. Exogenous catechin at 10 mg L-1 significantly improved the germination of Chinese pistachio seeds. An interesting result of hormone analysis was that the improving effect of catechin could be attributed to an increase in gibberellic acid 3 (GA3) content rather than a decrease in abscisic acid (ABA) content before germination. Treatments with paclobutrazol (PAC, a GA biosynthesis inhibitor) and PAC + catechin also showed that the promoting effect of catechin on seed germination depends on GA biosynthesis. Transcriptome analysis and qRT‒PCR further revealed that catechin induced the expression of PcGA20ox5 to activate GA biosynthesis. Several transcription factors were induced by catechin and GA treatments, such as TCP, bZIP and C3H, which may play an important regulatory role in GA biosynthesis in a catechin-mediated way.

CONCLUSIONS

Catechin promotes seed germination via GA biosynthesis in Chinese pistachios. This study proposes a novel mechanism by which catechin promotes seed germination via the GA pathway, which provides new insight into a comprehensive understanding of seed dormancy and germination.

摘要

背景与目的

中国开心果(Pistacia chinensis)是一种重要的园艺植物,具有美丽的叶子和果实,观赏价值极高。该树种的幼苗繁殖受到其不定型种子发芽的限制,但发芽机制尚不清楚。本研究旨在从一个新的角度,基于多组学数据来确定其发芽机制。

方法

采用多组学技术结合激素含量测定方法,对中国开心果种子发芽进行研究。

主要结果

由于在种子发芽过程中大量积累,儿茶素在广泛靶向代谢组学分析中从鉴定的代谢物中脱颖而出。10mg/L 外源儿茶素显著提高了中国开心果种子的发芽率。激素分析的一个有趣结果是,儿茶素的改善效果可以归因于赤霉素 3(GA3)含量的增加,而不是发芽前脱落酸(ABA)含量的降低。用多效唑(PAC,一种 GA 生物合成抑制剂)和 PAC+儿茶素处理也表明,儿茶素对种子发芽的促进作用取决于 GA 生物合成。转录组分析和 qRT-PCR 进一步表明,儿茶素诱导 PcGA20ox5 的表达来激活 GA 生物合成。儿茶素和 GA 处理诱导了几个转录因子的表达,如 TCP、bZIP 和 C3H,它们可能通过儿茶素介导的方式在 GA 生物合成中发挥重要的调控作用。

结论

儿茶素通过中国开心果中的 GA 生物合成促进种子发芽。本研究提出了儿茶素通过 GA 途径促进种子发芽的新机制,为全面了解种子休眠和发芽提供了新的见解。

相似文献

1
Catechin promotes the germination of Pistacia chinensis seeds via GA biosynthesis.
Ann Bot. 2024 Jul 9;134(2):233-246. doi: 10.1093/aob/mcae061.
2
Lipid metabolism during seed germination of Pistacia chinensis and its response to gibberellic acid.
Plant Physiol Biochem. 2025 Feb;219:109371. doi: 10.1016/j.plaphy.2024.109371. Epub 2024 Nov 30.
3
The GA and ABA signaling is required for hydrogen-mediated seed germination in wax gourd.
BMC Plant Biol. 2024 Jun 13;24(1):542. doi: 10.1186/s12870-024-05193-3.
5
Abscisic acid regulates seed germination of Vellozia species in response to temperature.
Plant Biol (Stuttg). 2017 Mar;19(2):211-216. doi: 10.1111/plb.12515. Epub 2016 Oct 26.
6
7
Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice.
Plant Signal Behav. 2012 May;7(5):563-5. doi: 10.4161/psb.19919. Epub 2012 Apr 20.
9
Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato.
Plant Physiol Biochem. 2012 Mar;52:28-37. doi: 10.1016/j.plaphy.2011.11.005. Epub 2011 Nov 12.

引用本文的文献

本文引用的文献

1
Maize ZmWRKY28: a target to regulate shade avoidance response under high planting density.
J Exp Bot. 2023 May 19;74(10):2937-2939. doi: 10.1093/jxb/erad146.
3
Phytotoxicity and allelopathic potential of L. leaf extract.
Front Plant Sci. 2022 Oct 5;13:986740. doi: 10.3389/fpls.2022.986740. eCollection 2022.
5
Molecular mechanisms of flavonoid accumulation in germinating common bean () under salt stress.
Front Nutr. 2022 Aug 29;9:928805. doi: 10.3389/fnut.2022.928805. eCollection 2022.
6
Multi-Omics Approaches Unravel Specific Features of Embryo and Endosperm in Rice Seed Germination.
Front Plant Sci. 2022 Jun 9;13:867263. doi: 10.3389/fpls.2022.867263. eCollection 2022.
7
Root and Leaf Extracts as Potential Bioherbicides.
Plants (Basel). 2022 Mar 29;11(7):916. doi: 10.3390/plants11070916.
8
Metabonomics analysis of flavonoids in seeds and sprouts of two Chinese soybean cultivars.
Sci Rep. 2022 Apr 1;12(1):5541. doi: 10.1038/s41598-022-09408-1.
9
The miR166 mediated regulatory module controls plant height by regulating gibberellic acid biosynthesis and catabolism in soybean.
J Integr Plant Biol. 2022 May;64(5):995-1006. doi: 10.1111/jipb.13253. Epub 2022 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验