Ge Ruiquan, Fang Zhaojie, Wei Pengxue, Chen Zhanghao, Jiang Hongyang, Elazab Ahmed, Li Wangting, Wan Xiang, Zhang Shaochong, Wang Changmiao
IEEE J Biomed Health Inform. 2024 Aug;28(8):4820-4829. doi: 10.1109/JBHI.2024.3394597. Epub 2024 Aug 6.
Fundus photography, in combination with the ultra-wide-angle fundus (UWF) techniques, becomes an indispensable diagnostic tool in clinical settings by offering a more comprehensive view of the retina. Nonetheless, UWF fluorescein angiography (UWF-FA) necessitates the administration of a fluorescent dye via injection into the patient's hand or elbow unlike UWF scanning laser ophthalmoscopy (UWF-SLO). To mitigate potential adverse effects associated with injections, researchers have proposed the development of cross-modality medical image generation algorithms capable of converting UWF-SLO images into their UWF-FA counterparts. Current image generation techniques applied to fundus photography encounter difficulties in producing high-resolution retinal images, particularly in capturing minute vascular lesions. To address these issues, we introduce a novel conditional generative adversarial network (UWAFA-GAN) to synthesize UWF-FA from UWF-SLO. This approach employs multi-scale generators and an attention transmit module to efficiently extract both global structures and local lesions. Additionally, to counteract the image blurriness issue that arises from training with misaligned data, a registration module is integrated within this framework. Our method performs non-trivially on inception scores and details generation. Clinical user studies further indicate that the UWF-FA images generated by UWAFA-GAN are clinically comparable to authentic images in terms of diagnostic reliability. Empirical evaluations on our proprietary UWF image datasets elucidate that UWAFA-GAN outperforms extant methodologies.
眼底摄影与超广角眼底(UWF)技术相结合,通过提供更全面的视网膜视图,成为临床环境中不可或缺的诊断工具。尽管如此,与UWF扫描激光检眼镜(UWF-SLO)不同,UWF荧光血管造影(UWF-FA)需要通过向患者手部或肘部注射荧光染料来进行。为了减轻与注射相关的潜在不良反应,研究人员提出开发能够将UWF-SLO图像转换为UWF-FA图像的跨模态医学图像生成算法。当前应用于眼底摄影的图像生成技术在生成高分辨率视网膜图像时遇到困难,尤其是在捕捉微小血管病变方面。为了解决这些问题,我们引入了一种新颖的条件生成对抗网络(UWAFA-GAN),用于从UWF-SLO合成UWF-FA。这种方法采用多尺度生成器和注意力传递模块,以有效地提取全局结构和局部病变。此外,为了抵消因使用未对齐数据进行训练而产生的图像模糊问题,在该框架内集成了一个配准模块。我们的方法在初始得分和细节生成方面表现出色。临床用户研究进一步表明,UWAFA-GAN生成的UWF-FA图像在诊断可靠性方面与真实图像在临床上相当。对我们专有的UWF图像数据集的实证评估表明,UWAFA-GAN优于现有方法。