Suppr超能文献

工作记忆中的语境和优先级表示。

Representing Context and Priority in Working Memory.

机构信息

University of Wisconsin-Madison.

Princeton Neuroscience Institute.

出版信息

J Cogn Neurosci. 2024 Jun 1;36(7):1374-1394. doi: 10.1162/jocn_a_02166.

Abstract

The ability to prioritize among contents in working memory (WM) is critical for successful control of thought and behavior. Recent work has demonstrated that prioritization in WM can be implemented by representing different states of priority in different representational formats. Here, we explored the mechanisms underlying WM prioritization by simulating the double serial retrocuing task with recurrent neural networks. Visualization of stimulus representational dynamics using principal component analysis revealed that the network represented trial context (order of presentation) and priority via different mechanisms. Ordinal context, a stable property lasting the duration of the trial, was accomplished by segregating representations into orthogonal subspaces. Priority, which changed multiple times during a trial, was accomplished by separating representations into different strata within each subspace. We assessed the generality of these mechanisms by applying dimensionality reduction and multiclass decoding to fMRI and EEG data sets and found that priority and context are represented differently along the dorsal visual stream and that behavioral performance is sensitive to trial-by-trial variability of priority coding, but not context coding.

摘要

在工作记忆 (WM) 中对内容进行优先级排序的能力对于成功控制思维和行为至关重要。最近的研究表明,WM 中的优先级排序可以通过在不同的表示格式中表示不同的优先级状态来实现。在这里,我们通过使用递归神经网络模拟双序列回溯任务来探索 WM 优先级排序的机制。使用主成分分析对刺激表示动态进行可视化显示,网络通过不同的机制表示试验上下文(呈现顺序)和优先级。顺序上下文是在试验持续时间内保持稳定的属性,通过将表示分为正交子空间来实现。优先级在试验过程中多次改变,通过在每个子空间内将表示分为不同的层来实现。我们通过将降维和多类解码应用于 fMRI 和 EEG 数据集来评估这些机制的通用性,发现优先级和上下文沿背侧视觉流以不同的方式表示,并且行为表现对优先级编码的逐次变化敏感,但不对上下文编码敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验