Suppr超能文献

基于优先级的视觉工作记忆中刺激表示的转换。

Priority-based transformations of stimulus representation in visual working memory.

机构信息

Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom.

出版信息

PLoS Comput Biol. 2022 Jun 2;18(6):e1009062. doi: 10.1371/journal.pcbi.1009062. eCollection 2022 Jun.

Abstract

How does the brain prioritize among the contents of working memory (WM) to appropriately guide behavior? Previous work, employing inverted encoding modeling (IEM) of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) datasets, has shown that unprioritized memory items (UMI) are actively represented in the brain, but in a "flipped", or opposite, format compared to prioritized memory items (PMI). To acquire independent evidence for such a priority-based representational transformation, and to explore underlying mechanisms, we trained recurrent neural networks (RNNs) with a long short-term memory (LSTM) architecture to perform a 2-back WM task. Visualization of LSTM hidden layer activity using Principal Component Analysis (PCA) confirmed that stimulus representations undergo a representational transformation-consistent with a flip-while transitioning from the functional status of UMI to PMI. Demixed (d)PCA of the same data identified two representational trajectories, one each within a UMI subspace and a PMI subspace, both undergoing a reversal of stimulus coding axes. dPCA of data from an EEG dataset also provided evidence for priority-based transformations of the representational code, albeit with some differences. This type of transformation could allow for retention of unprioritized information in WM while preventing it from interfering with concurrent behavior. The results from this initial exploration suggest that the algorithmic details of how this transformation is carried out by RNNs, versus by the human brain, may differ.

摘要

大脑如何在工作记忆 (WM) 的内容中进行优先级排序,以适当地指导行为?以前的研究采用脑电图 (EEG) 和功能磁共振成像 (fMRI) 数据集的逆编码建模 (IEM),表明未优先化的记忆项 (UMI) 在大脑中被主动表示,但与优先化的记忆项 (PMI) 相比,是以“翻转”或相反的格式表示的。为了获得这种基于优先级的表示转换的独立证据,并探索潜在的机制,我们使用具有长短期记忆 (LSTM) 架构的递归神经网络 (RNN) 来执行 2 背 WM 任务。使用主成分分析 (PCA) 对 LSTM 隐藏层活动进行可视化,证实了刺激表示在从 UMI 到 PMI 的功能状态过渡过程中经历了与翻转一致的表示转换。对相同数据进行去混合 (d)PCA 识别了两个表示轨迹,一个在 UMI 子空间内,一个在 PMI 子空间内,都经历了刺激编码轴的反转。从 EEG 数据集的数据进行的 dPCA 也提供了基于优先级的表示代码转换的证据,尽管存在一些差异。这种类型的转换可以允许在 WM 中保留未优先化的信息,同时防止其干扰当前行为。这项初步探索的结果表明,RNN 执行这种转换的算法细节与大脑可能不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd25/9197029/b438eeea48d1/pcbi.1009062.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验