Wicklein Bernd, Valurouthu Geetha, Yoon HongYeon, Yoo Hyunjoon, Ponnan Sathiyanathan, Mahato Manmatha, Kim Jiseok, Ali Syed Sheraz, Park Jeong Young, Gogotsi Yury, Oh Il-Kwon
Consejo Superior de Investigaciones Científicas (CSIC), Materials Science Institute of Madrid (ICMM), 28049 Madrid, Spain.
National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Apr 29;16(18):23948-59. doi: 10.1021/acsami.4c03298.
MXenes are highly versatile and conductive 2D materials that can significantly enhance the triboelectric properties of polymer nanocomposites. Despite the growing interest in the tunable chemistry of MXenes for energy applications, the effect of their chemical composition on triboelectric power generation has yet to be thoroughly studied. Here, we investigate the impact of the chemical composition of MXenes, specifically the TiCNT carbonitride vs the most studied carbide, TiCT, on their interactions with sodium alginate biopolymer and, ultimately, the performance of a triboelectric nanogenerator (TENG) device. Our results show that adding 2 wt % of TiCNT to alginate produces a synergistic effect that generates a higher triboelectric output than the TiCT system. Spectroscopic analyses suggest that a higher oxygen and fluorine content on the surface of TiCNT enhances hydrogen bonding with the alginate matrix, thereby increasing the surface charge density of the alginate oxygen atoms. This was further supported by Kelvin probe force microscopy, which revealed a more negative surface potential on TiCNT-alginate, facilitating high charge transfer between the TENG electrodes. The optimized TiCNT-alginate nanogenerator delivered an output of 670 V, 15 μA, and 0.28 W/m. Additionally, we demonstrate that plasma oxidation of the MXene surface further enhances triboelectric performance. Due to the diverse surface terminations of MXene, we show that TiCNT-alginate can function as either tribopositive or tribonegative material, depending on the counter-contacting material. Our findings provide a deeper understanding of how MXene composition affects their interaction with biopolymers and resulting tunable triboelectrification behavior. This opens up new avenues for developing flexible and efficient MXene-based TENG devices.
MXenes是高度通用且具有导电性的二维材料,能够显著增强聚合物纳米复合材料的摩擦电性能。尽管人们对用于能源应用的MXenes可调化学性质的兴趣日益浓厚,但其化学成分对摩擦发电的影响尚未得到充分研究。在此,我们研究了MXenes化学成分的影响,特别是碳氮化钛(TiCNT)与研究最多的碳化物TiCT相比,对其与海藻酸钠生物聚合物相互作用的影响,以及最终对摩擦纳米发电机(TENG)装置性能的影响。我们的结果表明,向海藻酸盐中添加2 wt%的TiCNT会产生协同效应,产生比TiCT系统更高的摩擦电输出。光谱分析表明,TiCNT表面较高的氧和氟含量增强了与海藻酸盐基质的氢键作用,从而增加了海藻酸盐氧原子的表面电荷密度。开尔文探针力显微镜进一步证实了这一点,该显微镜显示TiCNT-海藻酸盐表面电位更负,有利于TENG电极之间的高电荷转移。优化后的TiCNT-海藻酸盐纳米发电机输出为670 V、15 μA和0.28 W/m。此外,我们证明了MXene表面的等离子体氧化进一步增强了摩擦电性能。由于MXene表面具有多种终端,我们表明TiCNT-海藻酸盐可以根据接触的材料作为摩擦正极或摩擦负极材料。我们的研究结果更深入地理解了MXene成分如何影响其与生物聚合物的相互作用以及由此产生的可调摩擦起电行为。这为开发基于MXene的灵活高效的TENG装置开辟了新途径。