Suppr超能文献

人工智能在评估跌倒风险中的应用:系统评价。

The Applications of Artificial Intelligence for Assessing Fall Risk: Systematic Review.

机构信息

Nursing and Physical Therapy Department, Universidad de León, Ponferrada, Spain.

SALBIS Research Group, Nursing and Physical Therapy Department, Universidad de León, Ponferrada, Spain.

出版信息

J Med Internet Res. 2024 Apr 29;26:e54934. doi: 10.2196/54934.

Abstract

BACKGROUND

Falls and their consequences are a serious public health problem worldwide. Each year, 37.3 million falls requiring medical attention occur. Therefore, the analysis of fall risk is of great importance for prevention. Artificial intelligence (AI) represents an innovative tool for creating predictive statistical models of fall risk through data analysis.

OBJECTIVE

The aim of this review was to analyze the available evidence on the applications of AI in the analysis of data related to postural control and fall risk.

METHODS

A literature search was conducted in 6 databases with the following inclusion criteria: the articles had to be published within the last 5 years (from 2018 to 2024), they had to apply some method of AI, AI analyses had to be applied to data from samples consisting of humans, and the analyzed sample had to consist of individuals with independent walking with or without the assistance of external orthopedic devices.

RESULTS

We obtained a total of 3858 articles, of which 22 were finally selected. Data extraction for subsequent analysis varied in the different studies: 82% (18/22) of them extracted data through tests or functional assessments, and the remaining 18% (4/22) of them extracted through existing medical records. Different AI techniques were used throughout the articles. All the research included in the review obtained accuracy values of >70% in the predictive models obtained through AI.

CONCLUSIONS

The use of AI proves to be a valuable tool for creating predictive models of fall risk. The use of this tool could have a significant socioeconomic impact as it enables the development of low-cost predictive models with a high level of accuracy.

TRIAL REGISTRATION

PROSPERO CRD42023443277; https://tinyurl.com/4sb72ssv.

摘要

背景

跌倒及其后果是全球一个严重的公共卫生问题。每年,有 3730 万人因跌倒需要医疗关注。因此,分析跌倒风险对于预防非常重要。人工智能(AI)代表了通过数据分析创建跌倒风险预测统计模型的创新工具。

目的

本综述旨在分析 AI 在分析与姿势控制和跌倒风险相关数据中的应用的现有证据。

方法

在 6 个数据库中进行了文献检索,纳入标准为:文章必须在过去 5 年内(2018 年至 2024 年)发表,必须应用某种 AI 方法,AI 分析必须应用于由人类组成的样本数据,且分析样本必须由具有独立行走能力的个体组成,无论是否有外部矫形设备的辅助。

结果

共获得 3858 篇文章,最终选择了 22 篇。随后的分析数据提取在不同的研究中有所不同:82%(18/22)的研究通过测试或功能评估提取数据,其余 18%(4/22)的研究通过现有病历提取数据。整篇综述中使用了不同的 AI 技术。通过 AI 获得的预测模型中,所有纳入研究的准确性值均>70%。

结论

AI 的使用被证明是创建跌倒风险预测模型的有价值工具。该工具的使用可能具有重大的社会经济影响,因为它能够开发出具有高精度和低成本的预测模型。

试验注册

PROSPERO CRD42023443277;https://tinyurl.com/4sb72ssv。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a63b/11091813/bf258812442d/jmir_v26i1e54934_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验