文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种带有注意力机制的用于航空发动机的增强型卷积神经网络-长短期记忆网络剩余使用寿命预测模型。

An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism.

作者信息

Li Hao, Wang Zhuojian, Li Zhe

机构信息

Air Force Engineering University, Graduate School, Xi'an, Shaanxi, China.

Air Force Engineering University, Aeronautics Engineering College, Xi'an, Shaanxi, China.

出版信息

PeerJ Comput Sci. 2022 Aug 30;8:e1084. doi: 10.7717/peerj-cs.1084. eCollection 2022.


DOI:10.7717/peerj-cs.1084
PMID:36091994
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9455287/
Abstract

Remaining useful life (RUL) prediction is one of the key technologies of aircraft prognosis and health management (PHM) which could provide better maintenance decisions. In order to improve the accuracy of aircraft engine RUL prediction under real flight conditions and better meet the needs of PHM system, we put forward an improved CNN-LSTM model based on the convolutional block attention module (CBAM). First, the features of aircraft engine operation data are extracted by multi-layer CNN network, and then the attention mechanism is processed by CBAM in channel and spatial dimensions to find key variables related to RUL. Finally, the hidden relationship between features and service time is learned by LSTM and the predicted RUL is output. Experiments were conducted using C-MPASS dataset. Experimental results indicate that our prediction model has feasibility. Compared with other state-of-the-art methods, the RMSE of our method decreased by 17.4%, and the score of the prediction model was improved by 25.9%.

摘要

剩余使用寿命(RUL)预测是飞机预测与健康管理(PHM)的关键技术之一,它可以提供更好的维护决策。为了提高飞机发动机在实际飞行条件下RUL预测的准确性,并更好地满足PHM系统的需求,我们提出了一种基于卷积块注意力模块(CBAM)的改进型CNN-LSTM模型。首先,通过多层CNN网络提取飞机发动机运行数据的特征,然后由CBAM在通道和空间维度上进行注意力机制处理,以找到与RUL相关的关键变量。最后,通过LSTM学习特征与服役时间之间的隐藏关系,并输出预测的RUL。使用C-MPASS数据集进行了实验。实验结果表明,我们的预测模型具有可行性。与其他现有方法相比,我们方法的均方根误差(RMSE)降低了17.4%,预测模型的得分提高了25.9%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/6a1083273091/peerj-cs-08-1084-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/41f7df77ac67/peerj-cs-08-1084-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/a39dc11bb4fe/peerj-cs-08-1084-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/8073f84ea39f/peerj-cs-08-1084-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/59891a361a72/peerj-cs-08-1084-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/3429dcfe093f/peerj-cs-08-1084-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/b8f455828546/peerj-cs-08-1084-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/0d8c37b90dac/peerj-cs-08-1084-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/75f458cdb473/peerj-cs-08-1084-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/ade9d1288d48/peerj-cs-08-1084-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/a8693aca5b8e/peerj-cs-08-1084-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/358d7c8fc9cd/peerj-cs-08-1084-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/ef69a68c5418/peerj-cs-08-1084-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/6a1083273091/peerj-cs-08-1084-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/41f7df77ac67/peerj-cs-08-1084-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/a39dc11bb4fe/peerj-cs-08-1084-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/8073f84ea39f/peerj-cs-08-1084-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/59891a361a72/peerj-cs-08-1084-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/3429dcfe093f/peerj-cs-08-1084-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/b8f455828546/peerj-cs-08-1084-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/0d8c37b90dac/peerj-cs-08-1084-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/75f458cdb473/peerj-cs-08-1084-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/ade9d1288d48/peerj-cs-08-1084-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/a8693aca5b8e/peerj-cs-08-1084-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/358d7c8fc9cd/peerj-cs-08-1084-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/ef69a68c5418/peerj-cs-08-1084-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4f3/9455287/6a1083273091/peerj-cs-08-1084-g013.jpg

相似文献

[1]
An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism.

PeerJ Comput Sci. 2022-8-30

[2]
A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion.

Sensors (Basel). 2021-1-8

[3]
A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction.

Sensors (Basel). 2020-12-11

[4]
A novel transformer-based DL model enhanced by position-sensitive attention and gated hierarchical LSTM for aero-engine RUL prediction.

Sci Rep. 2024-5-2

[5]
Time Series Multiple Channel Convolutional Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life.

Sensors (Basel). 2019-12-26

[6]
Aircraft Engine Fault Diagnosis Model Based on 1DCNN-BiLSTM with CBAM.

Sensors (Basel). 2024-1-25

[7]
Few-shot RUL prediction for engines based on CNN-GRU model.

Sci Rep. 2024-7-11

[8]
A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings.

Sensors (Basel). 2022-10-13

[9]
Dual-frequency enhanced attention network for aircraft engine remaining useful life prediction.

ISA Trans. 2023-10

[10]
A new domain adaption residual separable convolutional neural network model for cross-domain remaining useful life prediction.

ISA Trans. 2024-2

引用本文的文献

[1]
Systematic review of predictive maintenance and digital twin technologies challenges, opportunities, and best practices.

PeerJ Comput Sci. 2024-4-22

本文引用的文献

[1]
Deep learning-based anomaly-onset aware remaining useful life estimation of bearings.

PeerJ Comput Sci. 2021-11-26

[2]
Deep Bidirectional Recurrent Neural Networks Ensemble for Remaining Useful Life Prediction of Aircraft Engine.

IEEE Trans Cybern. 2023-4

[3]
Data-driven remaining useful life prediction based on domain adaptation.

PeerJ Comput Sci. 2021-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索