Suppr超能文献

基于多模态身体网络和昼夜节律的睡眠阶段预测

Sleep stage prediction using multimodal body network and circadian rhythm.

作者信息

Waqar Sahar, Ghani Khan Muhammad Usman

机构信息

Department of Computer Engineering, University of Engineering and Technology, Lahore, Lahore, Punjab, Pakistan.

Department of Computer Science, University of Engineering and Technology, Lahore, Lahore, Punjab, Pakistan.

出版信息

PeerJ Comput Sci. 2024 Apr 22;10:e1988. doi: 10.7717/peerj-cs.1988. eCollection 2024.

Abstract

Quality sleep plays a vital role in living beings as it contributes extensively to the healing process and the removal of waste products from the body. Poor sleep may lead to depression, memory deficits, heart, and metabolic problems, . Sleep usually works in cycles and repeats itself by transitioning into different stages of sleep. This study is unique in that it uses wearable devices to collect multiple parameters from subjects and uses this information to predict sleep stages and sleep patterns. For the multivariate multiclass sleep stage prediction problem, we have experimented with both memoryless (ML) and memory-based models on seven database instances, that is, five from the collected dataset and two from the existing datasets. The Random Forest classifier outclassed the ML models that are LR, MLP, kNN, and SVM with accuracy (ACC) of 0.96 and Cohen Kappa 0.96, and the memory-based model long short-term memory (LSTM) performed well on all the datasets with the maximum attained accuracy of 0.88 and Kappa 0.82. The proposed methodology was also validated on a longitudinal dataset, the Multiethnic Study of Atherosclerosis (MESA), with ACC and Kappa of 0.75 and 0.64 for ML models and 0.86 and 0.78 for memory-based models, respectively, and from another benchmarked Apple Watch dataset available on Physio-Net with ACC and Kappa of 0.93 and 0.93 for ML and 0.92 and 0.87 for memory-based models, respectively. The given methodology showed better results than the original work and indicates that the memory-based method works better to capture the sleep pattern.

摘要

优质睡眠在生物体内起着至关重要的作用,因为它对愈合过程以及身体废物的清除有广泛贡献。睡眠不佳可能导致抑郁、记忆缺陷、心脏和代谢问题。睡眠通常以周期形式进行,并通过过渡到不同的睡眠阶段来循环重复。本研究的独特之处在于,它使用可穿戴设备从受试者身上收集多个参数,并利用这些信息来预测睡眠阶段和睡眠模式。对于多变量多类别睡眠阶段预测问题,我们在七个数据库实例上对无记忆(ML)模型和基于记忆的模型进行了实验,其中五个来自收集的数据集,两个来自现有数据集。随机森林分类器优于ML模型(即逻辑回归(LR)、多层感知器(MLP)、k近邻(kNN)和支持向量机(SVM)),准确率(ACC)为0.96,科恩卡帕系数为0.96,基于记忆的模型长短期记忆(LSTM)在所有数据集上表现良好,最高准确率达到0.88,卡帕系数为0.82。所提出的方法还在纵向数据集动脉粥样硬化多族裔研究(MESA)上得到验证,ML模型的ACC和卡帕系数分别为0.75和0.64,基于记忆的模型分别为0.86和0.78,并且在Physio-Net上可用的另一个基准苹果手表数据集上也得到验证,ML模型的ACC和卡帕系数分别为0.93和0.93,基于记忆的模型分别为0.92和0.87。给定的方法比原始工作显示出更好的结果,表明基于记忆的方法在捕捉睡眠模式方面效果更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7c0/11057653/083027f02819/peerj-cs-10-1988-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验