Suppr超能文献

基于注意力的深度学习方法用于单通道 EEG 的睡眠阶段分类。

An Attention-Based Deep Learning Approach for Sleep Stage Classification With Single-Channel EEG.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:809-818. doi: 10.1109/TNSRE.2021.3076234. Epub 2021 May 5.

Abstract

Automatic sleep stage mymargin classification is of great importance to measure sleep quality. In this paper, we propose a novel attention-based deep learning architecture called AttnSleep to classify sleep stages using single channel EEG signals. This architecture starts with the feature extraction module based on multi-resolution convolutional neural network (MRCNN) and adaptive feature recalibration (AFR). The MRCNN can extract low and high frequency features and the AFR is able to improve the quality of the extracted features by modeling the inter-dependencies between the features. The second module is the temporal context encoder (TCE) that leverages a multi-head attention mechanism to capture the temporal dependencies among the extracted features. Particularly, the multi-head attention deploys causal convolutions to model the temporal relations in the input features. We evaluate the performance of our proposed AttnSleep model using three public datasets. The results show that our AttnSleep outperforms state-of-the-art techniques in terms of different evaluation metrics. Our source codes, experimental data, and supplementary materials are available at https://github.com/emadeldeen24/AttnSleep.

摘要

自动睡眠阶段分类对于衡量睡眠质量非常重要。在本文中,我们提出了一种名为 AttnSleep 的基于注意力的深度学习架构,用于使用单通道 EEG 信号对睡眠阶段进行分类。该架构从基于多分辨率卷积神经网络(MRCNN)和自适应特征重新校准(AFR)的特征提取模块开始。MRCNN 可以提取低频和高频特征,而 AFR 能够通过对特征之间的相互依赖性进行建模来提高提取特征的质量。第二个模块是时间上下文编码器(TCE),它利用多头注意力机制来捕获提取特征之间的时间依赖关系。特别是,多头注意力使用因果卷积来对输入特征中的时间关系进行建模。我们使用三个公共数据集来评估我们提出的 AttnSleep 模型的性能。结果表明,在不同的评估指标方面,我们的 AttnSleep 模型优于最先进的技术。我们的源代码、实验数据和补充材料可在 https://github.com/emadeldeen24/AttnSleep 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验