Hu Jiaping, Peng Junyi, Zhou Zidong, Zhao Tianyun, Zhong Lijie, Yu Keyan, Jiang Kexin, Lau Tzak Sing, Huang Chuan, Lu Lijun, Zhang Xiaodong
Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics· Guangdong Province), Guangzhou, China.
School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
J Magn Reson Imaging. 2025 Jan;61(1):378-391. doi: 10.1002/jmri.29412. Epub 2024 Apr 30.
Artificial intelligence shows promise in assessing knee osteoarthritis (OA) progression on MR images, but faces challenges in accuracy and interpretability.
To introduce a temporal-regional graph convolutional network (TRGCN) on MR images to study the association between knee OA progression status and network outcome.
Retrospective.
194 OA progressors (mean age, 62 ± 9 years) and 406 controls (mean age, 61 ± 9 years) from the OA Initiative were randomly divided into training (80%) and testing (20%) cohorts.
FIELD STRENGTH/SEQUENCE: Sagittal 2D IW-TSE-FS (IW) and 3D-DESS-WE (DESS) at 3T.
Anatomical subregions of cartilage, subchondral bone, meniscus, and the infrapatellar fat pad at baseline, 12-month, and 24-month were automatically segmented and served as inputs to form compartment-based graphs for a TRGCN model, which containing both regional and temporal information. The performance of models based on (i) clinical variables alone, (ii) radiologist score alone, (iii) combined features (containing i and ii), (iv) composite TRGCN (combining TRGCN, i and ii), (v) radiomics features, (vi) convolutional neural network based on Densenet-169 were compared.
DeLong test was performed to compare the areas under the ROC curve (AUC) of all models. Additionally, interpretability analysis was done to evaluate the contributions of individual regions. A P value <0.05 was considered significant.
The composite TRGCN outperformed all other models with AUCs of 0.841 (DESS) and 0.856 (IW) in the testing cohort (all P < 0.05). Interpretability analysis highlighted cartilage's importance over other structures (42%-45%), tibiofemoral joint's (TFJ) dominance over patellofemoral joint (PFJ) (58%-67% vs. 12%-37%), and importance scores changes in compartments over time (TFJ vs. PFJ: baseline: 44% vs. 43%, 12-month: 52% vs. 39%, 24-month: 31% vs. 48%).
The composite TRGCN, capturing temporal and regional information, demonstrated superior discriminative ability compared with other methods, providing interpretable insights for identifying knee OA progression.
Stage 2.
人工智能在通过磁共振成像(MR)评估膝关节骨关节炎(OA)进展方面显示出前景,但在准确性和可解释性上面临挑战。
在MR图像上引入一种时间 - 区域图卷积网络(TRGCN),以研究膝关节OA进展状态与网络结果之间的关联。
回顾性研究。
来自骨关节炎倡议组织的194例OA进展者(平均年龄62±9岁)和406例对照者(平均年龄61±9岁)被随机分为训练组(80%)和测试组(20%)。
场强/序列:3T时的矢状面二维反转恢复快速自旋回波(IW)和三维双回波稳态(DESS)加权像。
在基线、12个月和24个月时,对软骨、软骨下骨、半月板和髌下脂肪垫的解剖子区域进行自动分割,并作为输入形成基于腔室的图,用于TRGCN模型,该模型包含区域和时间信息。比较基于以下因素的模型性能:(i)仅临床变量;(ii)仅放射科医生评分;(iii)联合特征(包含i和ii);(iv)复合TRGCN(结合TRGCN、i和ii);(v)放射组学特征;(vi)基于Densenet - 169的卷积神经网络。
采用DeLong检验比较所有模型的ROC曲线下面积(AUC)。此外,进行可解释性分析以评估各个区域的贡献。P值<0.05被认为具有统计学意义。
在测试组中,复合TRGCN的表现优于所有其他模型,DESS序列的AUC为0.841,IW序列的AUC为0.856(所有P<0.05)。可解释性分析突出了软骨相对于其他结构的重要性(42% - 45%),胫股关节(TFJ)相对于髌股关节(PFJ)的主导地位(58% - 67%对12% - 37%),以及各腔室重要性评分随时间的变化(TFJ对PFJ:基线:44%对43%,12个月:52%对39%,24个月:31%对48%)。
复合TRGCN能够捕捉时间和区域信息,与其他方法相比具有卓越的判别能力,为识别膝关节OA进展提供了可解释的见解。
2级。