Suppr超能文献

LMSST-GCN:用于改善膝关节骨关节炎进展预测的纵向MRI亚结构纹理引导图卷积网络

LMSST-GCN: Longitudinal MRI sub-structural texture guided graph convolution network for improved progression prediction of knee osteoarthritis.

作者信息

Lv Wenbing, Peng Junyi, Hu Jiaping, Lu Yijun, Zhou Zidong, Xu Hui, Xing Kongzai, Zhang Xiaodong, Lu Lijun

机构信息

School of Information and Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University, Kunming 650504, China.

Department of Radiation Therapy, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China.

出版信息

Comput Methods Programs Biomed. 2025 Apr;261:108600. doi: 10.1016/j.cmpb.2025.108600. Epub 2025 Jan 13.

Abstract

BACKGROUND AND OBJECTIVES

Accurate prediction of progression in knee osteoarthritis (KOA) is significant for early personalized intervention. Previous methods commonly focused on quantifying features from a specific sub-structure imaged at baseline and resulted in limited performance. We proposed a longitudinal MRI sub-structural texture-guided graph convolution network (LMSST-GCN) for improved KOA progression prediction.

METHODS

600 KOA participants from the Osteoarthritis Initiative underwent 3 longitudinal MRI scans at baseline, 12 and 24 months. 3D nnU-net was adopted to segment 32 sub-structures of each knee on both IW and DESS sequences at each time point. 105 radiomics features were extracted from each sub-structure, mRMR was used for feature selection, and only the most representative feature was retained to characterize its texture. Each patient was encoded into a 1D vector with 192 features by concatenating all features from 32 sub-structures on the 2 sequences at the 3 time points. Then a population graph was constructed with each vertex representing each patient and edges determining their connection/similarity. The graph was further fed into EdgeGCN to generate the probability of progression. A clinical model and three kinds of machine-learning models including Support Vector Machine (SVM), Random Forest, and Extreme Gradient Boosting (XGBoost) were also constructed for comparison. Interpretability analysis by using GNNExplainer was conducted to explain the association between specific knee sub-structure and KOA progression.

RESULTS

The proposed LMSST-GCN model and its variants (AUC ≥ 0.82) significantly outperformed the clinical model (AUC ≤ 0.72) and machine learning models (AUC ≤ 0.77, p ≤ 0.05 for all). Model performance benefits from the involvement of more sequences and more time points, the highest AUC of 0.85 was achieved by LMSST-GCN model constructed by using all available information. The interpretability analysis demonstrated that the loss of cartilage and sclerosis of subchondral bone at the tibial medial central region, the injury of lateral meniscus, and abnormal changes of the infrapatellar fat pad are more responsible for progression.

CONCLUSIONS

The proposed LMSST-GCN model characterized the texture of all knee sub-structures on longitudinal multi-sequence MRI and identified patients prone to progression in the scenario of vertex classification in a population graph, providing a novel strategy for improved prediction of KOA progression. The code was made publicly available at https://github.com/JunyiPeng-SMU/EdgeGCN.

摘要

背景与目的

准确预测膝关节骨关节炎(KOA)的病情进展对于早期个性化干预具有重要意义。以往的方法通常侧重于量化基线时特定子结构的特征,导致性能有限。我们提出了一种纵向MRI子结构纹理引导的图卷积网络(LMSST-GCN),以改进KOA病情进展预测。

方法

来自骨关节炎倡议组织的600名KOA参与者在基线、12个月和24个月时接受了3次纵向MRI扫描。采用3D nnU-net在每个时间点的IW和DESS序列上分割每个膝关节的32个子结构。从每个子结构中提取105个放射组学特征,使用mRMR进行特征选择,仅保留最具代表性的特征来表征其纹理。通过连接3个时间点2个序列上32个子结构的所有特征,将每个患者编码为一个具有192个特征的一维向量。然后构建一个群体图,每个顶点代表每个患者,边确定他们的连接/相似性。该图进一步输入EdgeGCN以生成病情进展的概率。还构建了一个临床模型和三种机器学习模型,包括支持向量机(SVM)、随机森林和极端梯度提升(XGBoost)进行比较。使用GNNExplainer进行可解释性分析,以解释特定膝关节子结构与KOA病情进展之间的关联。

结果

所提出的LMSST-GCN模型及其变体(AUC≥0.82)显著优于临床模型(AUC≤0.72)和机器学习模型(AUC≤0.77,所有p≤0.05)。模型性能受益于更多序列和更多时间点的参与,使用所有可用信息构建的LMSST-GCN模型实现了最高的AUC为0.85。可解释性分析表明,胫骨内侧中央区域软骨的丢失和软骨下骨的硬化、外侧半月板的损伤以及髌下脂肪垫的异常变化对病情进展的影响更大。

结论

所提出的LMSST-GCN模型在纵向多序列MRI上表征了所有膝关节子结构的纹理,并在群体图顶点分类的场景中识别出易于病情进展的患者,为改进KOA病情进展预测提供了一种新策略。代码已在https://github.com/JunyiPeng-SMU/EdgeGCN上公开。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验